(E)- and (Z)-1-(Phenylsulfonyl)-4-(trimethylsilyl)-2-butenes: Synthetic Equivalents for the 1-(1,3-Butadienyl) Anion and the 1,1-(1,3-Butadienyl) Dianion

Timothy P. Meagher, Larry Yet, Chi-Nung Hsiao, and Harold Shechter*
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210
Received March 25, 1997

Abstract

(E)- and (Z)-1-(phenylsulfonyl)-4-(trimethylsilyl)-2-butenes (7 and 8) are converted by n-BuLi to (E)- and (Z)-1-lithio-1-(phenylsulfonyl)-4-(trimethylsilyl)-2-butenes ($\mathbf{1 5}$ and 16) with retention of initial stereochemistries. Reactions of $\mathbf{1 5}$ and $\mathbf{1 6}$ with electrophiles (protio and deuterio acids, primary, secondary, and benzyl halides, chloroformates, chlorothioformates, acid chlorides, epoxides, trialkylsilyl chlorides, and triethylgermanyl chloride) in THF or THF/HMPA give the corresponding (E)- and (Z)-1-(phenylsulfonyl)-1-substituted-4-(trimethylsilyl)-2-butenes (32) with stereochemical retention. That β, γ-unsaturated silyl sulfones 32 are formed instead of their α, β-unsaturated (conjugated) isomers are attributed to stabilizing multiple anionic and cationic hyperconjugation and to steric effects as in 29-31. Of importance in synthesis is that $\mathbf{3 2}$ are eliminated by TBAF at -20 to $0{ }^{\circ} \mathrm{C}$, thermally, or by column chromatography to (E)- (100 to $>93 \%$) rather than (Z)1 -substituted-1,3-butadienes (38). Further, 32 undergo conversions by n-BuLi and various alkylating agents to (unconjugated) 1-(phenylsulfonyl)-1,1-disubstituted-4-(trimethylsilyl)-2-butenes (46) with retention of stereochemistry. Eliminations of 46 by fluoride ion, acid catalysis, or heat yield 1,1-disubstituted-1,3-butadienes (53). Silyl sulfones 7 and 8 are thus synthetic equivalents for the (E)-1-(1,3-butadienyl) anion (44) and the 1,1-(1,3-butadienyl) dianion (57). Silyl sulfones 7 and 8 also undergo efficient stereospecific intramolecular conversions by n-BuLi and α, ω-dihalides to 1,1-cycloalka-1-(phenylsulfonyl)-4-(trimethysilyl)-2-butenes (62 and 71) that are eliminated by fluoride ion, heat, or adsorption chromatography to 1,1-cycl oalka-1,3-butadienes (72).

Introduction

Vicinal silylsulfonylethanes 3 and 5 (eqs 1 and 2), readily prepared from 1-(phenylsulfonyl)-2-(trimethylsilyl)ethane (1), n-BuLi, and electrophiles, are of value because fluoride ion effects their eliminations to 1-substituted and 1,1-disubstituted ethenes 4 and 6 , respectively, at $0-65^{\circ} \mathrm{C} .{ }^{1}$ In further development of advanta-

geous desulfonylsilylation methodology, syntheses and various substitution and elimination reactions of (E)- and

[^0](Z)-1-(phenylsulfonyl)-4-(trimethylsilyl)-2-butenes (7 and 8) to give 1 -substituted and 1,1-disubstituted 1,3-butadienes 9 and 10 are now described. ${ }^{2}$ The objective of this program is to develop advantageous methodology for preparing functionally substituted conjugated dienes.

7

9

8

10

Results and Discussion

Silylsulfonylbutenes 7 and 8 (eq 3) are prepared in 41$62 \%$ yields by (1) addition of [(trimethylsilyl)methyl]magnesium chloride (11) to acrol ein and acidification to give 4-(trimethylsilyl)-1-buten-3-ol (12, 68\%), ${ }^{\text {3a }}$ (2) deprotonation of $\mathbf{1 2}$ by $\mathrm{n}-\mathrm{BuLi}$ and displacement of phenylsulfenyl chloride at $-78{ }^{\circ} \mathrm{C}$ to produce (E)- and (Z)-(silylsulfinyl)-2-butenes 14 (70-85\%) ${ }^{3 b}$ via 2,3-sigmatropic rearrangements of phenylsulfenate intermediate 13, and (3) oxidation of sulfoxides 14 (77-85\%) with MCPBA in

[^1]methylene chloride at $0^{\circ} \mathrm{C}$. The $\mathrm{E}: \mathrm{Z}$ ratios of 7 and 8 usually range from 77:23 to 88:12. If needed, chromatography allows separation of pure 7 from mixtures of 7 and 8.

n-BuLi (1 equiv) in THF converts 7 and 8 at $-78^{\circ} \mathrm{C}$ to lithio derivatives $\mathbf{1 5}$ and $\mathbf{1 6}$ which, when warmed to 20$25^{\circ} \mathrm{C}$ for $\sim 30 \mathrm{~min}$ and quenched with $\mathrm{D}_{2} \mathrm{O}$ (1 equiv), give deuterio derivatives $\mathbf{1 7}$ and 18 in 85\% yield. If 15 and 16 in THF are kept at $25^{\circ} \mathrm{C}$ for 3.3 h before deuteration, considerable decomposition occurs and the yields of deuterio products 17 and 18 are reduced to 47%. Lithio derivatives $\mathbf{1 5}$ and $\mathbf{1 6}$ are stable for only short periods at higher temperatures.

15

17

16

18

The structures, stereochemistries, and deuterium contents of $\mathbf{1 7}$ and $\mathbf{1 8}$ were determined by spectral methods. The proton-decoupled ${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 7}$ and $\mathbf{1 8}$ has distinct sets of absorptions for each isomer. The ratios of the peak heights for comparable carbon atoms in the mixtures of 17 and 18 obtained from 7 (77\%) and 8 (23\%) range from 77:23 to 83:17. The ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 7}$ and $\mathbf{1 8}$ at 250 MHz reveals absorptions at $\delta 5.56$ and 5.76 , respectively, and couplings between H_{b} and H_{a} of 15.2 and 10.7 Hz , respectively. The E:Z ratio of $\mathbf{1 7}$ and $\mathbf{1 8}$ found by ${ }^{1} \mathrm{H}$ NMR is 79:21 and agrees with that determined by ${ }^{13} \mathrm{C}$ NMR. There is no significant change in the positions of and the stereochemistries about the carbon-carbon double bonds upon conversions of 7 and 8 to deuterio derivatives 17 and 18.

[^2]Incorporation of a single deuterium atom into the α-positions of 7 and 8 was determined to be $\sim 87 \%$ by comparing the area of the deuterium-coupled ${ }^{1} \mathrm{H}$ NMR doublet in the $\delta 3.75$ region with that for trimethylsilyl ($\delta=0.00$). High-resolution mass spectral analyses of 19 and $\mathbf{2 0}$ resulting from loss of phenylsulfinate ions in $\mathbf{1 7}$ and 18 reveal that the cations are formed in a ratio of 84:16 which agrees closely with the 87:13 deuterium value obtained from the ${ }^{1} \mathrm{H}$ NMR peak area integrations.
(E)- and (Z)-silyl sulfones 7 and 8 were then dideuterated with $\mathrm{D}_{2} \mathrm{O}$ as follows. First, $\mathbf{7}$ and $\mathbf{8}$ were deprotonated with n -BuLi in THF at $-78{ }^{\circ} \mathrm{C}$. The solution was warmed slowly to room temperature, quenched with excess $\mathrm{D}_{2} \mathrm{O}$, and then worked up after 12.5 h . The only products detected are 1,1-dideuterio-2-butenes $\mathbf{2 1}$ and $\mathbf{2 2}$ in 89% yield. Dideuteration of the α-positions in 7 and

8 is apparent from inspection of the $\delta 3.7$ regions of the ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 1}$ and $\mathbf{2 2}$ which show only small ($<5 \%$) residual H absorptions. Dideuteration obviously arises after deprotonation of 17 and $\mathbf{1 8}$ by the lithium deuteroxide generated in quenching of $\mathbf{1 5}$ and $\mathbf{1 6}$. Further illustration of rapid protium-deuterium exchange in which carbon-carbon double bonds do not move into conjugation with phenylsulfonyl groups is that dideuteriosilyl sulfones $\mathbf{2 1}$ and $\mathbf{2 2}$ are converted by $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH} /$ THF to silyl sulfones 7 and 8 of natural deuterium abundances within 16 h .

Thefacts that the unconjugated silylsulfonyl-2-butenes 7 and 8 do not rearrange significantly to their conjugated sulfone isomers, (E)- and (Z)-1-butenes 23 and 24, or undergo deuterium incorporation to form (E)- and (Z)-3-deuterio-1-butenes 25 and (E)- and (Z)-3,3-dideuterio-1butenes 26 raise significant points. β, γ-Unsaturated

23

25

27

24

26

28
(nonconjugated) sulfones $\mathbf{2 7}$ are more stable than their α, β-unsaturated (conjugated) isomers 28. ${ }^{4}$ Hine et al. have suggested that $\mathbf{2 8}$ are not highly stabilized because sulfonyl groups are weak conjugaters. ${ }^{4}$ Now emphasized,

Table 1. Reactions of 1-Lithio Derivatives 15 and 16 of (E)- and (Z)-1-(Phenylsulfonyl)-4-(trimethylsilyl)-

2-butenes (7 and 8) with Electrophiles (eq 4)

Entry	7 and 8 , E/ZRatio ${ }^{3}$	Electrophile	Product, Eq 4 $\mathrm{E}_{1}=$	Yield(\%) ${ }^{\text {b }}$	E/ZRatio ${ }^{\text {a }}$
1	98:2	$\mathrm{CH}_{3} \mathrm{I}$	32a, CH_{3}	97	98:2
2	80:20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{Br}$	32b, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	99	79:21
3	98:2	$n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Br}$	32c, $n-\mathrm{C}_{5} \mathrm{H}_{11}$	99	96:4
4	72:28	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{Br}^{\text {c }}$	32d, $\mathrm{CH} 2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	83	75:25
5	98:2	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}{ }^{\text {r }}$	32e, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	97	98:2
6	77:23	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCOCl}$	32f, $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	67	83:17
7	86:14	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{SCOCl}$	32g, $\mathrm{COSC}_{2} \mathrm{H}_{5}$	45	79:21
8	77:23	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}$	32h, $\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	75	72:28
9	80:20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl}$	32i, $\mathrm{COC}_{6} \mathrm{H}_{5}$	64	∞
10	70:30	$B 0$	32j,	83	d
11	70:30	$\angle \mathrm{CH}_{3}$	32k, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	59	d
12	70:30	$\therefore_{\mathrm{C}_{2} \mathrm{H}_{5}}$	32I, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$	52	d
13	70:30	$\angle \sum_{\mathrm{C}_{6} \mathrm{H}_{5}}$	$32 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{5}$	54	d
14	77:23	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{GeCl}$	32n, $\mathrm{Ge}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}$	35	82:18
15	55:45	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$	320, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$	51	52:48
16	77:23	$\left.\left[\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right]_{3} \mathrm{SiCl}$	32p, $\mathrm{Si}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$	33	∞

a The E/Z ratios were calculated from ${ }^{1} \mathrm{H}$ NMR as described in the text. b Yields of isolated products. ${ }^{\text {c Reactions were conducted }}$ in THF/HMPA. ${ }^{d}$ The stereochemistries of the products are unknown.
in addition to steric effects, are that important factors in the greater thermodynamic stabilities of $\mathbf{7}$ and $\mathbf{8}$ over 23 and 24 are multiple anionic and cationic hyperconjugation as illustrated in part in 29-31. ${ }^{5}$ Similar significant hyperconjugative effects may be operational in 17, 18, 21, 22, and 27 and in other β, γ-unsaturated systems. ${ }^{5}$

31
Study was then made of reactions of lithio derivatives 15 and 16 with electrophiles to give (E)- and (Z)-1-substituted-2-butenes 32 (eq 4). Methyl iodide and benzyl bromide (Table 1, entries 1 and 2) alkylate $\mathbf{1 5}$ and 16 efficiently at $\mathrm{C}-1$ at $-78{ }^{\circ} \mathrm{C}$ in THF to give (E)- and (Z)-2-pentenes 32a and (E)- and (Z)-5-phenyl-2-pentenes 32b, respectively. The yellow col ors of solutions of lithio 15 \& 16

32
reagents $\mathbf{1 5}$ and $\mathbf{1 6}$ are discharged within 1 min after addition of the alkyl halides, and the yields of 32a and 32b are excellent. 1-Bromopentane (Table 1, entry 3) reacts much slower than the previous halides at $-78^{\circ} \mathrm{C}$

[^3]Table 2. Fluoride Ion Eliminations (eq 5) of (E)- and (Z)-1-(PhenyIsulfonyl)-1-substituted-4-(trimethylsilyl)-2-alkenes (32-35)

Entry	Product, Eq 5				
	Substrate, E=	E/ZRatio ${ }^{\text {a }}$	$\mathrm{E}_{1}=$	Yield(\%) ${ }^{6}$	E/ZRatio ${ }^{\text {c }}$
I	32a, CH_{3}	98:2	38a, CH_{3}	76	>98:2
2	32b, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	79:21	38b, $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	52	>99:1
3	32d, $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	75:25	38d, $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	63	>93:7
4	32e, $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	98:2	$38 \mathrm{e}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	85	>98:2
5	32f, $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	83:17	38f, $\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$	51	∞
6	32h, $\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	72:28	38h, $\mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$	74	∞
7	32i, $\mathrm{COC}_{6} \mathrm{H}_{5}$	100:0	38i, $\mathrm{COC}_{6} \mathrm{H}_{5}$	66	∞
8	32j,	d	38j,	83	>99:1
9	32k, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	d	$38 \mathrm{k}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$	76	∞
10	321, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{5}$	${ }^{\text {d }}$	381, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{2} \mathrm{H}_{3}$	88	∞
11	32m, $\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{5}$	d	$38 \mathrm{~m}, \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{C}_{6} \mathrm{H}_{5}$	57	∞
12	32p, $\mathrm{Si[CH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{l}_{3}$	100:0	$38 \mathrm{p}, \mathrm{Si}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$	61	∞
13	33,34, $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	d	38q. $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$	78	>96.4
14	35, c-C6 H_{11}	85:15	36, $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{11}$	57	>99:1

a The E/Z ratios were determined from ${ }^{1} \mathrm{H}$ NMR as described in the text. ${ }^{b}$ Yields of isolated products. ${ }^{c}$ The E / Z ratios were determined by high-field ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR methods. ${ }^{d}$ The stereochemistries of $\mathbf{3 2 j}-\mathbf{m}, \mathbf{3 3}$, and $\mathbf{3 4}$ are unknown.
in THF to yield (E)- and (Z)-2-nonenes 32c. HMPA accelerates alkylation of 1-bromopentane at $-78{ }^{\circ} \mathrm{C}$. Increases in the reaction temperatures (-20 to $23^{\circ} \mathrm{C}$) result however in significant decomposition of $\mathbf{1 5}$ and $\mathbf{1 6}$ and lower yields of alkylation products 32c. Reactions of 15 and 16 with 1-bromo-2-methyl propane (Table 2, entry 4), a slightly hindered halide, occur satisfactorily in THF/HMPA at $-78{ }^{\circ} \mathrm{C}$ to produce (E)- and (Z)-2heptenes 32d. Synthesis of 1-substituted 2-butenes 32 ($E_{1}=$ alkyl) from sodio analogues of $\mathbf{1 5}$ and $\mathbf{1 6}$ prepared from reactions of $\mathbf{7}$ and $\mathbf{8}$ with sodium hydride or sodium amide in THF is unsatisfactory. The insolubilities of these bases in THF limit deprotonations of $\mathbf{7}$ and 8 to temperatures of $0{ }^{\circ} \mathrm{C}$ and above, and under such conditions, thermal decompositions of sodio analogues of $\mathbf{1 5}$ and 16 become excessive.

Alkylations of $\mathbf{1 5}$ and $\mathbf{1 6}$ by 2-bromopropane, a secondary halide (Table 1, entry 5), in THF/HMPA yield (E)and (Z)-2-hexenes 32e (97\%). The more hindered secondary bromide, 2-bromo-1-phenylpropane, behaves as expected in that diastereomeric substitution products (E)and (Z)-2-hexenes 33 and 34 (40\%) are formed al ong with

33

34
(E)-1-phenyl-1-propene (26\%) and 7 and 8 (33\%). Further, bromocyclohexane and cyclohexyl tosylate are displaced by 15 and 16 to give (E)- and (Z)-1-cyclohexyl-2butenes 35 slowly and inefficiently (35-27\%). During reactions of bromocyclohexane with 15 and 16, 35 is converted in part to (E)-1-cyclohexyl-1,3-butadiene (36,

[^4]$13 \%), 7$ and 8 ($7-30 \%$), and cyclohexene and much of the bromocyclohexane is recovered. Attempts to improve coupling of secondary halides with $\mathbf{1 5}$ and $\mathbf{1 6}$ by addition of cupric chloride or cuprous iodide give complex product mixtures.

35

36

The E:Z ratios of 32a, 32c, and 32d (eq 4, Table 1) have been determined by high-field ${ }^{1} \mathrm{H}$ NMR methods. The H_{b} absorptions of the Z-isomers of the above product pairs are doublets of triplets at $\delta 5.0-5.2$ and couple to H_{a} by $\sim 9 \mathrm{~Hz}$. For the corresponding E-isomers, the resonances of H_{b} are doublets at $\delta 5.55$ which are coupled by $\sim 13 \mathrm{~Hz}$ to H_{a}. The stereochemistries of 32b, 32e, and 35 cannot be designated directly because their olefinic ${ }^{15}$ H NMR absorptions are not adequately resolved. The structures are assignable however by ${ }^{13} \mathrm{C}$ NMR on the premise that the E-isomer of a product pair obtained from 7 and 8 is always major. Of further importance in alkylations and cycloalkylations of $\mathbf{1 5}$ and $\mathbf{1 6}$ (Table 1) is that the stereochemistries of the products are essentially identical with those of initial 7 and 8. Such retentions in the geometries of highly conjugated allylic anionic systems have been previously observed in basecatalyzed α-alkylations of (E)- and (Z)-3-al kenoate esters ${ }^{6}$ and of (E)-1-phenylsulfonyl-2-pentene. ${ }^{6}$

Reactions of acid chlorides with lithio derivatives 15 and $\mathbf{1 6}$ are satisfactory. Additions of ethyl chloroformate, ethyl chlorothioformate, and trimethylacetyl chloride (Table 1, entries 6-8) to $\mathbf{1 5}$ and $\mathbf{1 6}$ in THF at $-78^{\circ} \mathrm{C}$ result in rapid displacements to give 1-carbalkoxy-, 1-carbothioalkoxy-, and 1-acyl-2-butenes 32f, 32g, and 32h, respectively, in 45-75\% yields. Each product pair exhibits two sets of ${ }^{13} \mathrm{C}$ NMR (63 MHz) absorptions, one set for each geometrical isomer. The E:Z ratio of 32f (Table 1) is determined after integration of the $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}$ ${ }^{1} \mathrm{H}$ NMR singlets at $\delta 0.06$ (Z) and -0.01 (E) or the α-silylmethylene hydrogen doublets at $\delta 1.48(J=7.0$ Hz, Z) and $1.55(\mathrm{~J}=7.4 \mathrm{~Hz}, \mathrm{E})$. Similarly, the E:Z ratio of $\mathbf{3 2 g}$ (Table 1) is obtained upon integration of the doublets at $\delta 4.56(\mathrm{~J}=8.5 \mathrm{~Hz}, \mathrm{E})$ and $4.80(\mathrm{~J}=8.5 \mathrm{~Hz}$, Z). Of value is that $\mathbf{3 2 h}$ separates cleanly on column chromatography to giveits (E)- and (Z)-isomers in 59 and 16% yields, respectively. Further, the E:Z ratios (Table 1) of $\mathbf{3 2 g} \mathbf{- h}$ are similar to those of the $\mathbf{7}$ and $\mathbf{8}$ used in the preparations and thus there are no significant stereochemical changes in the above transformations of lithio derivatives $\mathbf{1 5}$ and $\mathbf{1 6}$ (eq 4). The silylsulfonyl-3-penten-1-one 32i (Table 1, entry 9) obtained from 15 and 16 (80:20) and benzoyl chloride is a single isomer however and is presumed to be of E-stereochemistry. The reason 32i is the exclusive product of benzoylation of $\mathbf{1 5}$ and $\mathbf{1 6}$ has not been established. ${ }^{7}$

Reactions of lithio reagents $\mathbf{1 5}$ and 16 with epoxides were then developed. Cyclohexene oxide (Table 1, entry 10) is ring-opened by $\mathbf{1 5}$ and $\mathbf{1 6}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $-78{ }^{\circ} \mathrm{C}$ to

[^5]give cyclohexanols 32j in 83\% yield after neutralization. Three pairs of diastereomers in a ratio of 12:46:42 are indicated for 32j by the ${ }^{1} \mathrm{H}$ NMR H_{a} sulfone absorbances at $\delta 4.55,4.15$, and 3.55 downfield from that of tetramethylsilane. High-field ${ }^{13} \mathrm{C}$ NMR reveals however that 32j consists of four pairs of diastereomers, one pair in small amounts. Column chromatography results in isolation of the most polar diastereomeric pair from 32j as a white crystalline solid. The structures of the diastereomers of 32j cannot be designated further as yet.

Propylene oxide (Table 1, entry 11), an unsymmetrical epoxide, undergoes regiospecific alkylation at its methylene group upon reaction with 15 and 16 at $23^{\circ} \mathrm{C}$ in THF to give, after acidification, 5 -hepten-2-ols 32k (59\%). Similarly, $\mathbf{1 5}$ and $\mathbf{1 6}$ effect sterically directed ring openings of 1,2-epoxybutane (Table 1, entry 12) and styrene oxide (Table 1, entry 13) to yield 6-octen-3-ols 32l (52\%) and 4-hexen-1-ols 32m (54\%), respectively, upon neutralization. The stereochemistries of 32k, 321, and 32m could not be established by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR methods. The products were used directly in elimination experiments as will be described later.
Reactions of lithio derivatives $\mathbf{1 5}$ and $\mathbf{1 6}$ with trialkylgermanyl and trialkylsilyl chlorides have been studied. Triethylgermanyl chloride (Table 1, entry 14) reacts at $23^{\circ} \mathrm{C}$ in THF/HMPA with 15 and $\mathbf{1 6}$ to give (E)- and (Z)-1-(triethylgermanyl)-2-butenes 32n (35\%). Similarly, trimethylsilyl chloride (Table 1, entry 15) is displaced by 15 and 16 at $23^{\circ} \mathrm{C}$ in THF to yield (E)- and (Z)-1,4-bis-(trimethylsilyl)-2-butenes $\mathbf{3 2 0}$ (51\%). Although the reaction yields have not been maximized, the E:Z ratios of 32n and 320 as found from ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR correspond (Table 1) to that of the 7 and 8 used in the syntheses. Tri(2-propyl)silyl chloride (Table 1, entry 16), a sterically hindered reactant, is essentially inert to 15 and $\mathbf{1 6}$ in a $77: 21$ ratio in THF at $23^{\circ} \mathrm{C}$ for 4 h . Addition of HMPA (5 molar equiv) however results in greatly accelerated silylations of 15 and 16 to give 1-(tri(2-propyl)silyl)-2-butene $\mathbf{3 2 p}$ (33\%) which ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR reveal to be a single and presumably the E-isomer. Exclusive formation of (E)-32p presumably arises because reaction of tri(2-propyl)silyl chloride occurs much more rapidly with 15 than with 16.

Eliminations of (E)- and (Z)-1-substituted 2-butenes 32 (eq 5) to 1-substituted 1,3-butadienes 38 have been studied. Additions of commercial TBAF (1.5-2.0 molar equiv) to 32 (Table 2) in THF or $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ result in near-instantaneous formations of conjugated dienes 38 (eq 5) in 52-75\% yield along with trimethylsilyl fluoride (39) and phenylsulfinate ion (40). At $-20^{\circ} \mathrm{C}$ reaction

times increase to $\sim 1 \mathrm{~h}$. If less than 1.5 equiv of TBAF is used, initial 32 remains. The elimination method (eq 5, Table 2) usually works well with commercial TBAF which contains much water and with silyl sulfones that contain
alkyl, arylalkyl, cycloalkyl, ester, ketone, or hydroxyl groups (see Experimental Section). F or 32 which eliminate to highly volatile, conjugated dienes that cannot be separated easily from THF or $\mathrm{Et}_{2} \mathrm{O}$, the reactions can be accomplished efficiently in DMSO at $23^{\circ} \mathrm{C}$. Thus, 32a and 32e are converted by TBAF (Table 2) in DMSO and flash distillations to (E)-1,3-pentadiene (38a, 76\%) and (E)-5-methyl-1,3-hexadiene (38e, 85\%), respectively.

The behavior of fluoride ion with (E)- and (Z)-1,4-bis-(trimethylsilyl)-2-butenes (320) is different than that with 32a-m, 33, 34, and 35 (Table 2). Reaction of 320 with TBAF (2 equiv) at $0^{\circ} \mathrm{C}$ gives (E)-1-(phenylsulfonyl)-4-(trimethylsilyl)-2-butene (7, eq 6, 70\%) by attack of fluorideion on the trimethylsilyl groups at the 1-positions and then aqueous workup. (E)-1-(Trimethylsilyl)-1,3butadiene (43, eq 7), the conjugative elimination product, is not produced. (E)-1-(Phenylsulfonyl)-4-(trimethylsilyl)-

1-[tri(2-propyl)silyl]-2-butene (32p) however has its silicon at C-1 highly encumbered and is not attacked by fluoride ion as is 320 (eq 6). Satisfactory 1,4-elimination of $32 p$ thus does occur with TBAF (2 equiv) at $20-23^{\circ} \mathrm{C}$ in $<15 \mathrm{~min}$ to yield the single geometric isomer, (E)-1-[(tri-2-propyl)silyl]-1,3-butadiene (38p, eq 5, Table 2, $61 \%)$. Generally, conjugative desulfonylsilylation of 32 (Table 2) is an excellent low-temperature method for preparing 1-substituted-1,3-butadi ene derivatives 38 (eq 5), and thus 7 and 8 are effective synthetic equivalents for the 1-(1,3-butadienyl) anion (44).

44
High-field ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR methods reveal that almost all of the elimination products (Table2) aretotally (100\%) or near totally (98 to >99\%) single geometric isomers. ${ }^{13} \mathrm{C}$ NMR evidence does indicate that 38d and 38q contain second isomers (Table 2) in 7\% and 4\% amounts. Of note are that the ${ }^{1} \mathrm{H}$ NMR absorptions (250 MHz) of the olefinic hydrogens in $\mathbf{3 8 a} \mathbf{- q}$ and $\mathbf{3 6}$ (Table 2) are cleanly separated and the single or the major dienes are assigned E-stereochemistries on the basis of coupling constants (J_{cd}) of $14.8-16.3 \mathrm{~Hz}$ for protons H_{c} and H_{d} as represented in 38 in eq 5 . Elimination of silyl sulfones 32 by fluoride ion is therefore clearly an excellent method for preparing (E)-1-substituted-1,3-dienes (38), and thus 7 and 8 can be described more completely as practical synthetic equivalents for the (E)-1-(1,3-butadienyl) anion (44). What is not yet clear, however, are the detailed mechanisms of conversions of $\mathbf{3 2}$ by fluoride ion to $\mathbf{3 8}$
(eq 5) other than that the reactions are rapid. Although conjugative 1,4-elimination reactions usually occur more rapidly by cis than trans processes, ${ }^{8}$ cis- and/or transdesulfonylsilylations of $\mathbf{3 2}$ with steric control by the substituent at C-1 can give products (E)-38 essentially exclusively. Further studies of the stereochemistries of eliminations of (silylsulfonyl)alkenes are in progress.

Investigation has also been made of other fluorides and other reagents which effect conjugative eliminations of 32. Potassium fluoride does not eliminate 32b (Table 2) or 35 in refluxing acetonitrile (bp $81.6^{\circ} \mathrm{C}$) in 24 h . The lack of reaction in these experiments is due to the insolubility of the fluoride reagent. Potassium fluoride and $\mathbf{3 2 b}$ (Table 2) in refluxing acetonitrile for 16 h in the presence of the phase-transfer reagent, cetyltrimethylammonium bromide, give 38b however in 63\% yield. Similarly, addition of tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1, an acyclic cryptand) to 35 and potassium fluoride in refluxing acetonitrile yields 36 (Table 2, 65\%). ${ }^{9}$ The (E) and (Z) ratios of the 38b and the 36 produced, as determined from their ol efinic ${ }^{1} \mathrm{H}$ NMR coupling constants, are >99:1, respectively. Potassium fluoride in combination with phase-transfer reagents therefore is a satisfactory alternate to TBAF for eliminations of 32 if the higher reaction temperatures and the longer reaction times are unimportant. Aluminum chloride, when used in molar excess quantities (3 equiv) in methylene chloride at $-78{ }^{\circ} \mathrm{C}$, eliminates 32 b to 38b (Table 2; E:Z ratio of $>9: 1$) in 29% yield. The aluminum chloride methodology suffers in that the 38b formed reacts extensively with the Lewis acid present. ${ }^{10}$ Further, the eliminative behavior of 32b in the presence of boron trifluoride is unsatisfactory.

Attention next turned to practical alkylative conversions of various 1-substituted-2-butenes 32 to 1,1-disubstituted derivatives 46 (eq 8). 2-Butenes 7 and 8 are

found to be converted in a one-pot procedure to (E)- and (Z)-2-pentenes 47 in 98\% yield from (1) lithio intermediates 15 and 16 in THF with methyl iodide (1 equiv) at $-30^{\circ} \mathrm{C}$, (2) addition of n -BuLi (1 equiv) at $-78^{\circ} \mathrm{C}$, and (3) reaction with methyl iodide (1.5 equiv) at $20-25^{\circ} \mathrm{C}$. The stereochemistries of (E, Z)-47 could not be assigned by ${ }^{1} \mathrm{H}$ NMR because the absorptions of their olefinic protons ($\delta 5.2-5.7$) overlap.

47
Alkylation was then extended to $\mathbf{3 2 b}\left(\mathrm{E}_{1}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right.$, Table 1). Deprotonation of 32b ($\mathrm{E}: \mathbf{Z}=79: 21$) with n-BuLi, reaction with methyl iodide, workup, and chro-

[^6]matography give (E)- and (Z)-2-pentenes 48 in an 80:20 ratio in 97% yield. The geometric assignments of the products are based on ${ }^{1} \mathrm{H}$ NMR in that the absorption for H_{a} in (E$)-48\left(\delta 5.53, \mathrm{~J}_{\mathrm{ab}}=15.6 \mathrm{~Hz}\right)$ is downfield from that in $(Z)-48(\delta 5.41, \mathrm{~J} \mathrm{ab}=11.2 \mathrm{~Hz})$. Methylation thus proceeds with retention of olefinic stereochemistry. Further, benzylations of the 1-lithio derivatives of 32b (E_{1} $=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$, Table 1) give (E)- and (Z)-dibenzyl derivatives 49 from which (E)-49 can be crystallized in 71\% overall yield from hexane. The stereochemistry of (E)49 is assigned from the olefinic ${ }^{1} \mathrm{H}$ NMR coupling ($\mathrm{V}_{\mathrm{ab}}=$ 17 Hz) between $\mathrm{H}_{\mathrm{a}}(\delta 5.28)$ and $\mathrm{H}_{\mathrm{b}}(\delta 5.78)$.

48

49

1-Bromopentane is of interest because it reacts slowly with 1-lithio derivatives of 32b ($\mathrm{E}_{1}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{E}: \mathrm{Z}=$ 80:20, Table 1) in HMPA/THF at $\sim 15{ }^{\circ} \mathrm{C}$ to give, after aqueous workup and column chromatography on silica gel, the substitution products, (E)- and (Z)-2-nonenes 50, and elimination products, (E)- and (Z)-1,3-nonadienes 51, in 61 and 30\% yields, respectively.

50

Dialkylates 50 are white solids which display ${ }^{1} \mathrm{H}$ NMR absorptions for olefinic protons H_{a} and H_{b} at $\delta 5.27(\mathrm{~J}$ ab $=15.8 \mathrm{~Hz}$) and 5.42 for the E-isomer and at $\delta 5.12(\mathrm{~J}$ ab $=12.4 \mathrm{~Hz}$) and 5.67 for the Z-isomer. Disubstitutions at the C-1 positions in (E, Z)-50 are confirmed since H_{a} couple only to $\mathrm{H}_{\mathrm{b}} .{ }^{13} \mathrm{C}$ NMR reveals the presence of two quaternary carbons by absorptions at $\delta 71.77$ (E-isomer) and 73.37 (Z-isomer). The E:Z ratio of 50 is 79:21 and therefore essentially identical to that of its 32b precursors.

Dienes 51 are formed simply by conjugative eliminations of (E, Z)-50 during column chromatography. ${ }^{11}{ }^{11} \mathrm{H}$ NMR, ${ }^{13}$ C NMR, and GC-MS all indicate that 51 consists of E - and Z - isomers in a $53-54: 47-46$ ratio. NOE experiments reveal cleanly separated absorptions in (E, Z)-51 at $\delta 5.88$ and 6.05 , respectively. Irradiation at $\delta 5.88$ enhances magnetic resonance of the benzyl protons at $\delta 3.39$ and thus allows assignment of (E)-51. Irradiation at $\delta 6.05$ amplifies absorption of the allyl protons at $\delta 1.99$ and therefore the absorbances arise from (Z)-51.

Conjugative eliminations of 1,1-disubstituted-2-butenes 46 to 1,1-disubstituted-1,3-butadienes 53 by fluoride ion (eq 9), acid catalysis, or heat were then studied as follows.

Dimethyl(silyl)sulfones (E, Z)-47 are converted to $54\left(\mathrm{R}_{1}\right.$ and $\mathrm{R}_{2}=\mathrm{CH}_{3} ; 72 \%$) by TBAF in DMSO at $25^{\circ} \mathrm{C}$ and then flash vacuum distillation. Pentadienes $55\left(\mathrm{R}_{1}\right.$ and
$\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{Ph}$) result from eliminations of (E, Z)-49 by either TBAF in THF at $0^{\circ} \mathrm{C}$ (83\%), aqueous hydrochloric acid (12 M) at $25^{\circ} \mathrm{C}$, or gas chromatography (>52\%). Further, dienes (E, Z)-51 are obtained from (E, Z)-50 with TBAF/THF at $0{ }^{\circ} \mathrm{C}$ (65\%) or by heating. Of note are reactions of (E, Z)-48 with TBAF in THF at $0^{\circ} \mathrm{C}$ to yield (E)- and (Z)-1,3-pentadienes 56 (75\%) for which GC-MS analysis and NOE reveal that the $E: Z$ ratio is $80: 20$. The latter eliminations are emphasized because neither (E)48 nor (Z)-48 could be detected immediately after addition of the TBAF. The rapidities and the efficiencies of the above elimination reactions at $0^{\circ} \mathrm{C}$ are impressive. Silyl sulfones 7 and 8 therefore are excellent synthetic equivalents for the 1,1-(1,3-butadienyl) dianion 57 as well as for 44.

$54: R_{1}$ and $R_{2}=\mathrm{CH}_{3}$
$55: R_{1}$ and $R_{2}=\mathrm{CH}_{2}-\mathrm{Ph}$
$56: R_{1}=\mathrm{CH}_{3} ; \mathrm{R}_{2}=\mathrm{CH}_{2}-\mathrm{Ph}$
Synthesis of (E)- and (Z)-1-(3-(trimethylsilyl)-1-propenyl)cyclopropanes 62, possibly as in eq 10, then became a major objective. Indeed, 15 and 16, when treated with ethylene oxide (58) at $-78^{\circ} \mathrm{C}$ followed by methanesulfonyl chloride and refluxing, give mesylates 60. Addition of n-BuLi then results in lithio derivatives (E, Z)-61 which ring close to cyclopropanes (E, Z)-62 (28\% overall yield from 15 and 16).

Tetrahydropyrans (E,Z)-66 are also obtained (8\%) from the above experiment. Formation of 66 presumably occurs (eq 11) by dilithiation of $\mathbf{1 5}$ and $\mathbf{1 6}$ by n-BuLi (1.1 equiv), addition of ethylene oxide (58) to 63, reactions of 64 with methanesulfonyl chloride, and then ring closures of 65 by displacement. Sulfones are known to be dilithiated in their α-positions by n-BuLi. ${ }^{12}$

[^7]

Of particular relevance to the present proposal for formation of 66 is that allyl phenyl sulfone is converted by n -BuLi (>2 equiv) to 1,1-dilithioallyl phenyl sulfone (67). ${ }^{12}$

Cyclopropanes (E,Z)-62 were identified spectroscopically and from their chemistry as will be described. Crystallization of the cyclopropanes from hexane gives a single isomer as evidenced by its single set of ${ }^{13} \mathrm{C}$ NMR peaks. The ${ }^{1} \mathrm{H}$ NMR of the crystallized product is complex but integrates for two olefinic protons. Although the coupling constant, J ab, for the ol efinic hydrogens could not be determined, the pure cyclopropane isolated is assumed to be (E)-62.

Searches were then made of a better synthesis of cyclopropanes (E, Z)-62 and a general method for preparing their higher cycloalkane homologues. Reactions of 1,2di bromoethane [eq 12; $\mathbf{6 8}=\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Br}$] in THF/HMPA with $\mathbf{1 5}$ and 16, as prepared from $\mathbf{7}$ and $\mathbf{8}$ of 85:15 ratio,

occur smoothly at -78 to $20^{\circ} \mathrm{C}$ to give (E)- and (Z)-6-bromo-2-hexenes $69\left[\mathrm{Y}\left(\mathrm{CH}_{2}\right)_{n}=\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{2}\right]$ which are lithiated by n-BuLi with displacement of lithium bromide to yield (95\%) cyclopropyl derivatives (E, Z)-62 (71; $\mathrm{n}=$ 2). Recrystallization of the ring-closure products from pentane gives the single cyclopropane assigned previously as (E)-62. The overall synthesis of (E)-62 is excellent.

Reactions of $\mathbf{1 5}$ and $\mathbf{1 6}$ in an 85:15 ratio with $\mathbf{6 8}$ were extended as in eq 12 to 1,3-dibromopropane, 1-bromo-4-
chlorobutane, and 1,5-dibromopentane. The monoalkylated products formed, $69\left[\left(\mathrm{CH}_{2}\right)_{n} \mathrm{Y}=\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{3}, \mathrm{Br}\left(\mathrm{CH}_{2}\right)_{4}\right.$, and $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{5}$], are converted by $\mathrm{n}-\mathrm{BuLi}$ and ring closure (eq 12) to the corresponding four-, five-, and sixmembered ring (E)- and (Z)-1-(3-(trimethylsilyl)-1-propenyl)cycloalkanes 71 ($n=3,4$, and 5) in 87, 89, and 78% yields, respectively. Each of the products exhibits ${ }^{13} \mathrm{C}$ NMR absorptions for E - and Z-isomers. The ${ }^{1} \mathrm{H}$ NMR of the ol efinic hydrogens, H_{a} and H_{b}, in each product are well-separated and their chemical shifts ($\delta 5.29-4.92$, J ab $=15.4-15.9 \mathrm{~Hz} ; \delta 5.09-4.70, \mathrm{~J}$ ab $=11.9-11.5 \mathrm{~Hz}$) allow assignments of the E - and Z -isomers of each pair. The $E: Z$ ratios for the cyclobutane, cyclopentane, and cyclohexane derivatives 71 ($\mathrm{n}=3,4$, and 5) prepared range only from 84:16 to 86:14, and thus there is essentially total retention in the stereochemistries in the above cycloalkylations of $\mathbf{1 5}$ and 16.

Silylsulfonyl eliminations of (E, Z)-62, its four-, five-, and six-membered ring homologues (E, Z)-71 [($\left.\mathrm{CH}_{2}\right)_{\mathrm{n}}$, n $=3,4$, and 5], and tetrahydropyrans (E, Z)- 67 were then investigated. Reactions of (E, Z)- 62 with TBAF in DMSO at $0^{\circ} \mathrm{C}$ (eq 13) and flash vacuum distillation yield

62 \& 71 \qquad

72, $n=2-5$
allylenecyclopropane ($\mathbf{7 2}, \mathrm{n}=2$; 90\%), a diene of considerable synthetic and theoretical interest. ${ }^{13}$ Allylene $\mathbf{7 2}$ ($\mathrm{n}=2$), a polymerizable conjugated diene, is stable for prolonged periods at $-78{ }^{\circ} \mathrm{C}$, and its structure is confirmed by comparison with literature properties. ${ }^{13}$ The conjugated dienic behavior of $72(\mathrm{n}=2)$ is further elaborated by effecting its near instantaneous cycloaddition to 4-phenyl-1,2,4-triazoline-3,5-dione at $-78{ }^{\circ} \mathrm{C}$ to give triazol odi one 73 (81\%).

In extensions of the above methodology, allylenecyclobutane (72, $\mathrm{n}=3$; 87\%) and allylenecycl opentane (72, $n=4 ; 89 \%$) are obtained simply by rapid distillations of solutions of cycl obutanes ($\mathrm{E}, \mathrm{Z})$ - $\mathbf{7 1}(\mathrm{n}=3)$ and cyclopentanes $(E, Z)-71(n=4)$ from DMSO containing TBAF. Further, treatment of cyclohexanes (E, Z)-71 $(n=5)$ and tetrahydropyrans (E, Z)- 69 with fluorideion in THF at 0 ${ }^{\circ} \mathrm{C}$ and chromatography on silica gel result in efficient production of allylenecyclohexane (72, $n=5 ; 78 \%$) and 4-allylenetetrahydropyran (74, 87\%), respectively. The

[^8]structures of $\mathbf{7 2}(\mathrm{n}=3,4$, and 5$)$ and $\mathbf{7 4}$ are established by spectral methods and by comparison with literature data. ${ }^{13}$

74
In conclusion, silyl sulfones 7 and 8 undergo efficient and stereospecific electrophilic conversions to their corresponding 1-substituted (32, eq 4), 1,1-disubstituted (46, eq 8), and 1,1-cycloalka (71, eq 12) silyl sulfones. Such substituted silyl sulfones are eliminated by fluoride ion, thermally, or adsorption chromatography to 1-substituted (38, eq 5), 1,1-disubstituted (53, eq 9), and 1,1-cycloalka (72, eq 13) 1,3-dienes, respectively. Silyl sulfones 7 and 8 are therefore of value as synthetic equivalents for 44 and 57. The use of silyl sulfones for preparing oquinodimethanes and other unusual dienes advantageously are described in detail in separate publications from this laboratory. ${ }^{14}$

Experimental Section

General Considerations. Proton nuclear magnetic resonance spectra are reported in parts per million on the δ scale when CDCl_{3} is denoted as the solvent with residual CHCl_{3} at $\delta 7.26$ as an internal reference. The ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shifts [multiplicity ($s=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), coupling constants in hertz, integration, and interpretation]. ${ }^{13}$ C NMR chemical shifts are reported in parts per million relative to the center line of the CDCl_{3} triplet (77.0 ppm) and are denoted as "e" (none or two protons attached), " o " (one or three protons attached), and "u" (quaternary carbon) as determined from the APT pulse sequence and as " C " (no protons attached), " CH " (one proton attached), " CH_{2} " (two protons attached), or " CH_{3} " (three protons attached) as determined from the DEPT pulse sequence. Mass spectra were recorded at an ionization energy of 70 eV . THF was predried over potassium hydroxide and distilled from lithium aluminum hydride, $\mathrm{Et}_{2} \mathrm{O}$ was distilled from sodium benzophenone ketyl, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from calcium hydride. All reactions were conducted under argon. EM Laboratories 0.25 mm thick precoated silica gel 60F-254 plates were used for analytical chromatography. Elemental analyses were performed by MicroAnalyses, Inc., Wilmington, DE, or Atlantic Microlab, Inc., Norcross, GA.

4-(Trimethylsilyl)-1-buten-3-ol (10). (Chloromethyl)trimethylsilane ($20.0 \mathrm{~g}, 0.163 \mathrm{~mol}$) in anhydrous THF (30 mL) was added in 2 h to a suspension of magnesium turnings (4.50 $\mathrm{g}, 0.205 \mathrm{~mol}$) in anhydrous THF (120 mL). The mixture was stirred at room temperature for 1 h and cooled to $0{ }^{\circ} \mathrm{C}$. Acrolein ($9.50 \mathrm{~g}, 0.170 \mathrm{~mol}$) in anhydrous THF (30 mL) was then added (15 min), and the mixture was stirred for 45 min . The solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$, quenched with hydrochloric acid, washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The yellow liquid residue (26.0 g) was distilled at $54-56^{\circ} \mathrm{C}$ at 1.7 mmHg to give col orless 10 ($16.2 \mathrm{~g}, 69 \%):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02(\mathrm{~s}, 9 \mathrm{H}), 0.83-1.30$ (m, 2 H), $2.05(\mathrm{bs}, 1 \mathrm{H}), 4.25(\mathrm{bq}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, \mathrm{J}$ $=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, \mathrm{J}=14.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.92$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.8,26.3,71.5,113.4,143.4 ;$ exact mass calcd for $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{SiO} \mathrm{m} / \mathrm{e} 144.0970$, found m / e 144.0970.
(E)- and (Z)-1-(Phenylsulfinyl)-4-(trimethylsilyl)-2butenes (12). Phenylsulfenyl chloride ($6.80 \mathrm{~g}, 47.1 \mathrm{mmol}$) was added slowly to $\mathbf{1 0}(6.80 \mathrm{~g}, 47.1 \mathrm{mmol})$ and $\mathrm{n}-\mathrm{BuLi}(30.6 \mathrm{~mL}$, $49.0 \mathrm{mmol}, 1.60 \mathrm{M}$ in hexane) in anhydrous THF (50 mL) at

[^9]$-78{ }^{\circ} \mathrm{C} .{ }^{3 b}$ The red color of the phenylsulfenyl chloride disappeared immediately on addition. The resulting light yellow solution was then stirred at room temperaturefor 2 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo to a yellow oil (10.9 g). Flash chromatography (silica gel; ethyl acetate:hexanes, 1:2) yielded $\mathbf{1 2}$ (7.86 g, 66\%), a light yellow liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \mathrm{E}\right.$ - and Z-isomers) $\delta-0.03$ (s, 9 H), 1.41 (d, J $=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.49 (d, $\mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.50(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.05-5.15 (m, 1 $\mathrm{H}), 5.56-5.65(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.65(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E - and Z-isomers) $\delta-2.1,-1.9,19.3,23.7,55.5,60.8,113.2$, $114.4,124.3,127.4,128.9,130.8,130.9,135.1,137.4,143.4 ;$ exact mass calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{SOPh}\right) \mathrm{m} / \mathrm{e} 127.0943$, found m/e 127.0935.
($\mathrm{E}, 7$)- and (Z,8)-1-(Phenylsulfonyl)-4-(trimethylsilyl)-2-butenes. To $12(15.24 \mathrm{~g}, 60.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was slowly added MCPBA ($12.7 \mathrm{~g}, 58.9-62.5 \mathrm{mmol}, 80-85 \%$ assay) at $0^{\circ} \mathrm{C}$. The white suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h, diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed with aqueous $\mathrm{NaHCO}_{3}, 25 \%$ aqueous sodium metabisulfite, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting light yellow liquid (16.2 g) on chromatography (silica gel; ethyl acetate: hexanes, 1:5) gave $\mathbf{7}$ and $\mathbf{8 (1 5 . 8 7 \mathrm { g } , 9 8 \%) \text { as a viscous col orless }}$ oil: IR (neat film) 1310, 1250, $1150 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \mathrm{E}-\right.$ and Z-isomers) $\delta-0.08(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.45$ (d, J $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~d}, \mathrm{~J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 5.10-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.80(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.86$ (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$ - and Z-isomers) $\delta-2.1,-2.0$, 20.8, 23.6, 54.9, 60.1, 112.5, 113.4, 128.2, 128.3, 128.9, 129.3, 133.4, 133.5, 135.6, 138.5; exact mass calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Si}\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{m} / \mathrm{e}$ 127.0943, found $\mathrm{m} / \mathrm{e} 127.0936$.
($\mathrm{E}, 17$)- and (Z,18)-1-Deuterio-1-(phenylsulfonyl)-4-(tri-methylsilyl)-2-butenes. n-BuLi ($0.21 \mathrm{~mL}, 0.56 \mathrm{mmol}, 2.65$ M) in hexane was added to a solution of 7 and 8 (80:20 ratio; $150 \mathrm{mg}, 0.56 \mathrm{mmol}$) in THF (10 mL) at $0^{\circ} \mathrm{C}$. After being stirred at $25^{\circ} \mathrm{C}$ for 3.3 h , the mixture was quenched with $\mathrm{D}_{2} \mathrm{O}$ (1 mL). The solution was immediately neutralized with aqueous ammonium chloride, washed with $\mathrm{H}_{2} \mathrm{O}$, dried (Mg SO_{4}), filtered, and concentrated to a yellow clear oil (0.12 g). Column filtration (silica gel; ethyl acetate 5%) yielded (E)-17 and (Z)-18 (71 mg, 47\%): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E} / \mathrm{Z}$ isomer 79:21, 87% monodeuterium incorporation) $\delta-0.08$ (s, 9 H), 1.25 (dd, J = 7.5, $1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{dd}, \mathrm{J}=8.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{bd}$, $\mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 5.56(\mathrm{dt}, \mathrm{J}=15.2$, $\left.8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 5.76$ (dt, J $=10.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$), $7.49-$ $7.91(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl 3 , E/Z ratio 77:23 to 83:17) δ $-2.1,18.9,23.7,60.0,112.5,129.0,128.3,128.4,129.0,133.4$, 133.5, 135.8, 138.6, 138.8; mass spectrum, m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{19^{-}}$ $\mathrm{DO}_{2} \mathrm{SSi}\left(\mathrm{M}^{+}\right)$269.1016, found 269.1005; $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{DSi} / \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Si}\left(\mathrm{M}^{+}\right.$ - $\mathrm{O}_{2} \mathrm{SPh}$) isotope ratio 84/16.
(E)- and (Z)-1,1-Dideuterio-1-(phenylsulfonyl)-4-(tri-methylsilyl)-2-butenes (21 and 22). Products 21 and 22, yield 89%, a light yellow liquid: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CCl}_{4},>95 \%\right.$ deuterium incorporation) $\delta-0.00(\mathrm{~s}, 9 \mathrm{H}), 1.2-1.6(\mathrm{~m}, 2 \mathrm{H})$, 5.18 (bd, J $=15 \mathrm{~Hz}, 1 \mathrm{H}$), $5.32-5.97$ (m with a dt at $5.62, \mathrm{~J}=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.50-8.14$ ($\mathrm{m}, 5 \mathrm{H}$); mass spectrum m/e calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{O}_{2} \mathrm{SPh}\right)$ 128.0990, found 128.1001.

Procedure A for Monosubstitution Reactions of (E)and (Z)-1-(Phenylsulfonyl)-4-(trimethylsilyl)-2-butenes with Electrophiles (7 and 8). (E)- and (Z)-4-(Phenylsul-fonyl)-1-(trimethylsilyl)-2-pentenes (32a). n-BuLi (3.51 $\mathrm{mL}, 7.38 \mathrm{mmol}, 2.10 \mathrm{M}$ in hexane) was syringed slowly into a solution of $\mathbf{7}$ and $\mathbf{8}(1.80 \mathrm{~g}, 6.71 \mathrm{mmol})$ in anhydrous THF (10 mL) at $-78{ }^{\circ} \mathrm{C}$. The stirred mixture turned bright yellow. After 20 min , methyl iodide ($1.26 \mathrm{~g}, 8.88 \mathrm{mmol}$) was added. The mixture was stirred for 1 h at room temperature, worked up, and concentrated in vacuo to a yellow oil (1.39 g). Column chromatography (silica gel; ethyl acetate:hexanes, 1:10) afforded 32a ($1.84 \mathrm{~g}, 97 \%$) as a col orless viscous liquid: ${ }^{1}$ H NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$-isomer) $\delta 0.00(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.48(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.58 (dt, J = 15.0, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.3-8.0(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E-isomer) $\delta-2.0,14.1,23.6,64.0,120.8,128.8,129.1$, 133.4, 135.6, 137.8; exact mass calcd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{SO}_{2}{ }^{-}\right.$

Ph) m/e 141.1099, found m/e 141.1092. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SSi}: \mathrm{C}, 59.52 ; \mathrm{H}, 7.85$. Found: C, 59.64; $\mathrm{H}, 7.55$.
(E)- and (Z)-5-Phenyl-4-(phenylsulfonyl)-1-(trimethyl-silyl)-2-pentenes (32b). Procedure A, yield 99\%, a clear viscous oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E-isomer) $\delta 0.09$ ($\mathrm{s}, 9 \mathrm{H}$), 1.66 ($\mathrm{m}, 2 \mathrm{H}$), $3.16\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J} \mathrm{ab}=13.6 \mathrm{~Hz}\right.$, J $\left.=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.85$ $\left(H_{b}, d d, J_{a b}=13.5 \mathrm{~Hz}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.06\left(\mathrm{H}_{\mathrm{c}}, \mathrm{m}, 1 \mathrm{H}\right)$, $5.3-5.7(\mathrm{~m}, 2 \mathrm{H}), 7.4-8.3(\mathrm{~m}, 10 \mathrm{H})$; irradiation at $\delta 1.66$ simplified the vinyl absorption region to 5.3-5.4 ($\mathrm{m}, 1 \mathrm{H}$) and 5.58 (d, J $=14.9 \mathrm{~Hz}, 1 \mathrm{H}$); irradiation at $\delta 4.06$ simplified the vinyl and benzyl magnetic resonance regions to 5.38 (dd, J = $15.2,4.3 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.4-5.7(\mathrm{~m}, 1 \mathrm{H})$ and $3.85(\mathrm{~d}, \mathrm{~J}=15.2$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right.$, E-isomer) $\delta-2.1,23.7,34.0,71.0$, $118.8,126.7,128.5,128.9,129.2,133.5,137.1,138.0,138.3 ;$ exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{m} / \mathrm{e} 217.1412$, found m / e 217.1407. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SSi}: \mathrm{C}, 66.99$; H, 7.31. Found: C, 67.03; H, 6.94.
Procedure B for Monosubstitution Reactions of 7 and 8 with Electrophiles. (E)- and (Z)-4-(PhenyIsulfonyl)-1-(trimethylsilyl)-2-nonenes (32c). n-BuLi ($1.97 \mathrm{~mL}, 2.95$ mmol, 1.50 M in hexane) was syringed into a sol ution of $\mathbf{7}$ and 8 ($726 \mathrm{mg}, 2.70 \mathrm{mmol}$) in anhydrous THF (20 mL). After 20 min, 1-bromopentane ($429 \mathrm{mg}, 2.84 \mathrm{mmol}$) foll owed by HMPA $(2.57 \mathrm{~mL}, 14.00 \mathrm{mmol})$ was added. After being warmed to room temperature, the mixture was stirred for 1 h , worked up, and concentrated to a yellow viscous oil (1.13 g). Column chromatography (silica gel; ethyl acetate 0-5\%) gave 32c (875 $\mathrm{mg}, 99 \%$) as a light yellow oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E -isomer) δ $0.00(\mathrm{~s}, 9 \mathrm{H}), 0.7-2.2(\mathrm{~m}$ with a $\delta, \mathrm{J}=8.0 \mathrm{~Hz}$ at $\delta 1.46,13 \mathrm{H})$, $3.30(\mathrm{bt}, \mathrm{J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, \mathrm{J}=15.0,9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.40 (dt, J $=15.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.3-8.0(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E-isomer) $\delta-2.0,13.9,22.4,23.7,26.3,27.4,31.2,69.6$, 119.8, 128.8, 129.1, 133.3, 137.2, 138.3; exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{m} / \mathrm{e}$ 197.1726, found m / e 197.1729.
(E)- and (Z)-6-Methyl-4-(phenyIsulfonyl)-1-(trimethyl-silyl)-2-heptenes (32d). Procedure B, yield 83\%, a col orless viscous oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E-isomer) $\delta 0.00$ (s, 9 H), 0.79 $(\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.2-1.8(\mathrm{~m}, 5$ H), $3.53(\mathrm{bt}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, \mathrm{J}=15.2,9.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.47 (dt, J $=15.2,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.5-7.9(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$-isomer) $\delta-2.0,20.5,23.5,25.2,35.9,68.1,119.7$, 128.7, 129.0, 133.2, 137.1, 138.1; exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{23^{-}}$ $\mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{m} / \mathrm{e}$ 183.1569, found $\mathrm{m} / \mathrm{e} 183.1592$.
(E)- and (Z)-5-Methyl-4-(phenylsulfonyl)-1-(trimethyl-silyl)-2-hexenes (32e). Procedure B , yield 97\%, a col orless oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$-isomer) $\delta-0.07(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.52(\mathrm{~m}, 2 \mathrm{H})$, $2.65(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~m}, 2 \mathrm{H}), 7.4-7.8(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E-isomer) $\delta-2.0,18.0,22.0,23.7,26.9,74.9$, 116.5, 128.7 (2 coincidental peaks), 133.1, 138.1, 139.3; exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{m} / \mathrm{e}$ 169.1413, found $\mathrm{m} / \mathrm{e} 169.1392$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{SSi}: \mathrm{C}, 61.89 ; \mathrm{H}, 8.44$. Found: C, 61.39; H, 8.23.
(E)- and (Z)-5-Methyl-6-phenyl-4-(phenylsulfonyl)-1-(trimethylsilyl)-2-hexenes (33 and 34). Procedure B: column chromatography gives as the first eluent (E)-1-phenyl-1-propene (25%) and initial bromide as assigned by ${ }^{1} \mathrm{H}$ NMR and GLC analyses (column QF-1, 15\%, Chromosorb W). The second eluent is (E)-33 and (Z)-34 (40\%), an unresolved mixture of diastereomers as a colorless oil. The ${ }^{1} \mathrm{H}$ NMR of the mixture could not be assigned because of the ambiguous coupling patterns; mass spectrum, m/e calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{Si}$ (M^{+} - $\mathrm{O}_{2} \mathrm{SPh}$) 245.1725, found 245.172. GC-CI-MS (isobutane) of the product revealed three isomers, A, B, and C, in a ratio of 54:42:4: isomer A, m/e (relative intensity) $387\left(0.4, \mathrm{M}^{+}+\mathrm{H}\right.$), 287 (5), 245 (31), 215 (100), 173 (8), 143 (38), 126 (11), 105 (6), 91 (6), 73 (5); isomer B, 387 ($0.4 \mathrm{M}^{+}+\mathrm{H}$), 287 (19), 245 (24), 215 (100), 173 (7), 143 (33), 126 (7), 105 (5), 91 (4), 73 (5); isomer C, 387 ($1, \mathrm{M}^{+}+\mathrm{H}$), 287 (100), 245 (5), 215 (22), 173 (1), 143 (1). Last, 7 and 8 (33% recovery) were eluted from the column.

Ethyl (E)- and (Z)-2-(Phenylsulfonyl)-5-(trimethylsi-lyl)-3-pentenoates (32f). Procedure A, yield 67\%, liquid: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$ - and Z-isomers) $\delta-0.01(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.46(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.55(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2$
H), 4.13 ($\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.47 (d, J $=9.5 \mathrm{~Hz}, 1 \mathrm{H}$), $5.27-$ $5.37(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.86(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.68(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.87(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl 3 , E- and Z-isomers) $\delta-2.1,-2.0,13.8,23.7,24.1,60.3,62.1,74.6,113.4$, 114.3,128.3, 128.8, 129.0, 129.5, 133.4, 134.0, 137.4, 138.6, 142.8, 165.1; exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ m / e 199.1154, found m/e199.1201. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$ SSi: C, 56.44; H, 7.10. Found: C, 56.79; H, 6.72.

Ethyl (E)- and (Z)-2-(Phenylsulfonyl)-5-(trimethylsi-lyl)-3-pentenethioates ($\mathbf{3 2} \mathbf{~ g}$). Procedure A, yield 45\%, a viscous liquid: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E - and Z-isomers) $\delta-0.08$ ($\mathrm{s}, 9 \mathrm{H}$) , $-0.02(\mathrm{~s}, 9 \mathrm{H}), 1.17(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~d}, \mathrm{~J}=$ $9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1$ H), $4.90(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.90$ (m, 1 H$), 7.47-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.81-7.90(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$ - and Z-isomers) $\delta-2.0,-1.9,14.2,18.9,19.7,24.1$, $24.2,80.3,112.5,114.2,128.3,128.4,128.7,128.9,129.6,134.0$, 135.7,140.6, 190.8; exact mass cal cd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{SO}_{2}{ }^{-}\right.$ $\mathrm{Ph}, \mathrm{SCH}_{2} \mathrm{CH}_{3}$) m/e 154.0814, found m / e 154.0813. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{Si}: \mathrm{C}, 54.90 ; \mathrm{H}, 6.78$. Found: C, $54.69 ; \mathrm{H}, 6.95$.
(E)- and (Z)-2,2-Dimethyl-4-(phenylsulfonyl)-7-(trim-ethylsilyl)-5-hepten-3- ones (32h). Procedure A: (1) (E)32h (59\%), a white solid [mp 99-100 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E-isomer) $\delta-0.03(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 2 H), 5.04-5.15 (m, 2 H), 5.73-5.85 (m, 1 H), 7.49-7.87 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E-isomer) $\delta-1.9,24.0,25.9,45.8,73.6$, 117.0, 128.5, 130.2, 133.8, 137.6, 142.3, 206.2; exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{m} / \mathrm{e} 211.1520$, found $\mathrm{m} / \mathrm{e} 211.1545$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SSi}: \mathrm{C}, 61.32 ; \mathrm{H}, 8.01$. Found: C, 61.63; H, 8.01] and (2) (Z)-32h (16\%), a colorless oil [${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, Z-isomer) $\delta 0.06$ (s, 9 H), 1.16 (s, 9 H), 1.46-1.66 (m, $2 \mathrm{H}), 5.02-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-$ 5.81 (m, 1 H), 7.48-7.84 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, Z-isomer) $\delta-1.5,19.3,26.0,45.5,68.5,117.3,128.4,130.3,133.8,136.3$, 137.5, 206.6; exact mass calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ $\mathrm{m} / \mathrm{e} 211.1520$, found $\mathrm{m} / \mathrm{e} 211.1541$].
(E)-1-Phenyl-2-(phenylsulfonyl)-5-(trimethylsilyl)-3-penten-1-one (32i). Procedure A, yield 64%, a viscous yellow liquid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.05(\mathrm{~s}, 9 \mathrm{H}), 1.54(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, 2 H), $5.34-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.56$ (d, J $=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82-5.95 (m, 1 H), 7.29-7.66 (m, 6 H$), 7.83-7.98(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-1.9,24.2,74.4,115.8,117.3,127.6,128.5,128.6$, 128.7, 128.9, 129.1, 130.0, 133.9, 133.9, 136.1, 137.2 142.9, 191.3; exact mass calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{m} / \mathrm{e}$ 231.1206, found m/e 231.1214. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{SSi}$: C, 64.48; H, 6.49. Found: C, 64.65; H, 6.25.
(E)- and (Z)-2-(1-(Phenylsulfonyl)-4-(trimethylsilyl)-2-buten-1-yl)cyclohexanols (32j). Procedure A, column chromatography of the reaction product gave 32 j (83%), a partially resolved mixture of diastereomers (two by TLC). The more polar isomer was obtained as a colorless oil which crystallized to a white solid: $\mathrm{mp} 122-123{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, polar isomer) $\delta-0.13(\mathrm{~s}, 9 \mathrm{H}), 1.21-2.33(\mathrm{~m}, 11 \mathrm{H}), 3.17(\mathrm{~m}, 1 \mathrm{H})$, 4.17 (dd, J $=9.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.3-5.4(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.95$ (m, 5 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, polar isomer) $\delta-2.0,23.7,24.9$, 25.2, 26.4, 36.4, 44.2, 68.5, 70.6, 116.4, 128.6, 128.7, 133.1, 138.2, 139.0; mass spectrum (polar isomer), m/e calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{O}_{2} \mathrm{SPh}\right)$ 226.1753, found 226.1720.
(E)- and (Z)-4-(Phenylsulfonyl)-7-(trimethylsilyl)-5-hepten-2-ols (32k). Procedure A, yield 59\%, a yellow oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta-0.11(\mathrm{~s}, 9 \mathrm{H}), 1.14,1.21(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.32-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.6-1.9(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.20(\mathrm{~m}, 2 \mathrm{H}), 3.6-$ $4.1(\mathrm{~m}, 1 \mathrm{H}), 4.9-5.1(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.58(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.85$ $(\mathrm{m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-2.0,22.7,23.6,24.3,64.5,65.5$, $66.5,66.7,119.0,119.9,128.8,128.8,129.0,133.3,133.4,137.3$, 137.5, 137.8; exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ $\mathrm{m} / \mathrm{e} 205.1362$, found $\mathrm{m} / \mathrm{e} 205.1349$. Anal. Cal cd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}-$ SSi: C, 58.85; H, 8.03. Found: C, 58.57; H, 7.63.
(E)- and (Z)-5-(Phenylsulfonyl)-8-(trimethylsilyl)-6-octen-3-ols (321). Procedure A, yield 52%, a yellow viscous oil: ${ }^{1 H} \mathrm{HMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.12(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3$ H), 1.32-1.55 (m, 4 H), 1.64-1.82 (m, 1 H), 2.0-2.3 (m, 2 H), 3.38-3.50 (m), 3.68-3.94 (m, 1 H), 4.95-5.12 (m, 1 H), 5.38$5.55(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.85(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta-2.0$, $-1.9,9.5,9.8,23.5,23.6,29.4,31.0,34.4,35.6,66.4,66.5,69.7$,
70.5, 119.1, 120.2, 128.7, 128.8, 129.0, 129.1, 133.3, 133.4, 137.1, 137.8; exact mass calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right)$ m / e 199.1520, found m / e 199.1528. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3}-$ SSi: C, 59.96; H, 8.29. Found: C, 59.52; H, 8.08.
(E)- and (Z)-1-Phenyl-3-(phenylsulfonyl)-6-(trimethyl-silyl)-4-hexen-1-ols (32m). ProcedureA, yield 54\%, a viscous yellow liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.05(\mathrm{~s}, 9 \mathrm{H}), 1.42-1.52$ (m, 2H), 2.15 (s, 1 H), 2.40-2.51 (m, 2 H), 3.40-3.49 (m, 1 H), $4.81(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.70$ (m, 1 H$), 7.23-7.94(\mathrm{~m}, 10 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-2.2,-1.9$, 23.7, 37.2, 66.1, 66.6, 70.7, 71.8, 119.4, 120.8, 125.6, 126.0, 127.9, 128.1, 128.4, 128.6, 128.7, 128.8, 129.0, 133.4, 137.4, 137.7, 138.3, 142.5; exact mass cal cd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{SO}_{2^{-}}\right.$ Ph) m/e 247.1520, found $\mathrm{m} / \mathrm{e} 47.1503$.
(E)- and (Z)-1-(Phenylsulfonyl)-1-(triethylgermanyl)-4-(trimethylsilyl)-2-butenes (32n). Procedure B, yield 35\%, a colorless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E-and Z-isomers) $\delta-0.28$ (s, $9 \mathrm{H}),-0.17(\mathrm{~s}, 9 \mathrm{H}), 1.09-1.14(\mathrm{~m}, 15 \mathrm{H}), 1.31-1.37(\mathrm{~m}, 2 \mathrm{H})$, 3.51 (d, J $=10.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.01-$ 5.10 (m, 1 H), 5.22-5.34 (m, 1 H), 5.35-5.46 (m, 1 H), 7.42$7.55(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.80(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$ - and Z-isomers) $\delta-2.0,5.2,5.3,8.8,8.9,17.9,23.1,56.1,60.9,119.2$, $127.8,128.0,128.5,128.6,129.2,132.4,132.4,132.5,140.1$, 141.0; exact mass calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{SO}_{2} \mathrm{SiGe}$ m/e428.1261, found $\mathrm{m} / \mathrm{e} 428.1241$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{SO}_{2} \mathrm{SiGe}: \mathrm{C}, 54.42$; H, 8.02. Found: C, 54.61; H, 8.03.
(E)- and (Z)-1-(Phenylsulfonyl)-1,4-bis(trimethylsilyl)-2-butenes (320). Procedure A, yield 51%, a yellow viscous oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$ - and Z-isomers) $\delta-0.27$ (s, 9 H), -0.19 ($\mathrm{s}, 9 \mathrm{H}$) $, 0.28(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{bd}, \mathrm{J}=10.3 \mathrm{~Hz}, 1$ H), $3.68(\mathrm{bd}, \mathrm{J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-5.42(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.80$ $(\mathrm{m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E and Z-isomers) $\delta-2.1,-2.0$, $-1.3,-1.1,20.0,23.2,57.8,63.0,120.3,127.8,128.1,128.5$, $128.9,130.6,130.8,132.5,132.6,133.8,140.7,140.8$; exact mass calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SSi}_{2} \mathrm{~m} / \mathrm{e} 340.1349$, found $\mathrm{m} / \mathrm{e} 340.1303$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{SSi}_{2}$: $\mathrm{C}, 56.42 ; \mathrm{H}, 8.29$. Found: C, 56.57; H, 7.89.
(E)-1-(Phenylsulfonyl)-4-(trimethylsilyl)-1-[tri(2-propyl)-silyl]-2-butene (32p). Procedure A, yield 33\%, an off-white solid: $\mathrm{mp} 101-102^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.15(\mathrm{~s}, 9 \mathrm{H}), 1.19$ (dd, J $=15.6,7.4 \mathrm{~Hz}, 18 \mathrm{H}), 1.26-1.54(\mathrm{~m}, 5 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.82-4.95 (m, 1 H), 5.35-5.46 (m, 1 H), 7.43$7.57(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-1.9$, 12.2, 20.9, 23.3, 60.2, 119.5, 128.0, 128.5, 132.4, 134.3, 140.8; exact mass calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SSi}_{2} \mathrm{~m} / \mathrm{e} 424.2287$, found m/e 424.2251. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SSi}_{2}$: C, 62.21; H, 9.49. Found: C, 61.87; H, 9.51.
(E)- and (Z)-4-Cyclohexyl-4-(phenylsulfonyl)-1-(tri-methylsilyl)-2-butenes (35). Procedure B, yield 35%, a clear oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E-isomer) $\delta-0.08$ (s, 9 H), 1.03-1.76 (m, 11 H), $2.12(\mathrm{bd}, \mathrm{J}=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 3.31$ (dd, $\mathrm{J}=9.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.32(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.81(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E-isomer) $\delta-1.9,23.6,26.0,26.4,28.6,32.1$, 36.7, 74.9, 117.4, 128.7, 133.0, 137.4, 139.1; exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{m} / \mathrm{e}$ 209.1726, found $\mathrm{m} / \mathrm{e} 209.1720$. Reactants 7 and 8 (30\%) were also recovered.

Procedure B with cyclohexyl p-toluenesulfonate at room temperature led to 35 (27% conversion).

General Procedure C for Fluoride-Induced Eliminations of Silyl Sulfones in DMSO. (E)- and (Z)-1,3-Pentadienes (38a). DMSO (7 mL) was added to TBAF (7.08 mL , $7.08 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF), and the mixture was concentrated $\left(0.1 \mathrm{mmHg} / 25^{\circ} \mathrm{C}\right)$. TheTBAF/DMSO reagent was then added to 32a ($1.08 \mathrm{~g}, 3.82 \mathrm{mmol}$) in DMSO (5 mL) at $25^{\circ} \mathrm{C}$. After being stirred for 20 min , the mixture was flash distilled (15 ${ }^{\circ} \mathrm{C} / 30-100 \mathrm{mmHg}$). The vol atile components were trapped at $-78{ }^{\circ} \mathrm{C}$ to give a mixture of 38a ($197 \mathrm{mg}, 76 \%$) and hexamethyldisiloxane (213 mg). The IR and ${ }^{1} \mathrm{H}$ NMR of 38a are essentially identical to that of an authentic sample.

General Procedure D for Fluoride-Induced Eliminations of 1-(Phenylsulfonyl)-1-substituted-4-(trimethyl-silyl)-2-butenes (32). (E)-5-Phenyl-1,3-pentadiene (38b). TBAF ($1.74 \mathrm{~mL}, 1.74 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF) was added to 32b $(313 \mathrm{mg}, 0.870 \mathrm{mmol})$ in anhydrous THF $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The dark mixture was stirred for 30 min , worked up, and concen-
trated in vacuo to a brown oil (140 mg). Column chromatography (silica gel; ethyl acetate:hexanes, 1:5) afforded 38b (65 $\mathrm{mg}, 52 \%)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.42(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.99$ $\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=9.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.5,1.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.84\left(\mathrm{H}_{\mathrm{c}}, \mathrm{dt}, \mathrm{J}=15.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.10\left(\mathrm{H}_{\mathrm{d}}, \mathrm{dd}, \mathrm{J}=\right.$ $15.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.33\left(\mathrm{H}_{\mathrm{e}}\right.$, ddd, J = 16.8, $\left.10.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$. The IR and ${ }^{1}$ H NMR spectra of $\mathbf{3 8 b}$ agree with literature values. ${ }^{15 a}$

KF/Cetyltrimethylammonium Bromide Methodology for Eliminating 32b to (E)-5-Phenyl-1,3-pentadiene (38b). A solution of $\mathbf{3 2 b}$ ($272 \mathrm{mg}, 0.76 \mathrm{mmol}$), potassium fluoride (170 $\mathrm{mg}, 3.0 \mathrm{mmol}$), and cetyltrimethylammonium bromide (40 mg , 0.11 mmol) in acetonitrile (10 mL) was refluxed for 16 h . VPLC analysis using (E)-propenylbenzene as an internal standard showed 38b to be produced in 63% yield.
(E)- and (Z)-6-Methyl-1,3-heptadienes (38d). Procedure D, yield 63%, a colorless liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.83$ (d, J $=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{dd}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.89$ $\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=10.0,0.50 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.00\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.7,0.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.58\left(\mathrm{H}_{\mathrm{c}}, \mathrm{dt}, \mathrm{J}=15.1,7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.95\left(\mathrm{H}_{\mathrm{d}}, \mathrm{dd}, \mathrm{J}=\right.$ $15.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23\left(\mathrm{H}_{\mathrm{e}}\right.$, ddd, J $=16.9,10.2,10.1 \mathrm{~Hz}, 1$ H). Irradiation at $\delta 1.50$ caused $\delta 5.58$ to collapse to a doublet, $\mathrm{J}=15.0 \mathrm{~Hz}$; GC-MS detected two isomers in a 93:7 ratio [major isomer m/e(relative intensity 110 ($38, \mathrm{M}+$), 95 (21), 81 (10), 67 (89) 56 (61), 54 (65), 43 (99), 41 (100), 39 (50); minor isomer m/e(relative intensity) 110 (37), 95 (38), 81 (7), 67 (93), 56 (57), 54 (59), 43 (89), 41 (100), 39 (59)].
(E)-1-Cyclohexyl-1,3-butadiene (36). Procedure D, yield 57\%: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.10-2.11\left(\mathrm{~m}, 11 \mathrm{H}\right.$, ring), $5.03\left(\mathrm{H}_{\mathrm{a}}\right.$, dd, J = 15.3, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.18\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.75\left(\mathrm{H}_{\mathrm{c}}\right.$, dd, J $\left.=15.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.11\left(\mathrm{H}_{\mathrm{d}}, \mathrm{dd}, \mathrm{J}=15.3\right.$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.40\left(\mathrm{H}_{\mathrm{e}}\right.$, ddd, $\left.\mathrm{J}=16.9,10.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$. The IR and ${ }^{1} \mathrm{H}$ NMR spectra of 36 correspond to the literature. ${ }^{15 b}$

KF/TDA-1 Methodology for Elimination. (E)-1-Cyclo-hexyl-1,3-butadiene (36). A solution of 35 ($270 \mathrm{mg}, 0.77$ mmol), anhydrous KF (134 mg , 2.31 mmol), and TDA-1 (30 $\mathrm{mg}, 0.09 \mathrm{mmol}$) in acetonitrile (10 mL) was refluxed for 20 h . VPLC analysis revealed that $\mathbf{3 6}$ is formed in 65\% yield.

Ethyl (E)-2,4-Pentadienoate (38f). Procedure D, yield 51%, a light yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 4.24(\mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.48\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=10.5,0.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.60\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.9,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.91\left(\mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=15.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.45\left(\mathrm{H}_{\mathrm{d}}\right.$, ddd, J $\left.=17.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26\left(\mathrm{H}_{\mathrm{e}}, \mathrm{dd}\right.$, $\mathrm{J}=15.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.3,60.4,122.3$, 125.4, 134.8, 144.6, 166.8; exact mass calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~m} / \mathrm{e}$ 126.0681, found $m / e 126.0717$. The spectra of $38 f$ correspond to reported values. ${ }^{15 \mathrm{c}}$
(E)-2,2-Dimethyl-4,6-heptadien-3-one (38h). Procedure D, yield 74%, a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.16(\mathrm{~s}, 9 \mathrm{H})$, $5.51\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=9.4,0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.64\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=15.5,0.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46\left(\mathrm{H}_{\mathrm{c}}\right.$, ddd, $\left.\mathrm{J}=17.6,9.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.57\left(\mathrm{H}_{\mathrm{d}}\right.$, $\mathrm{d}, \mathrm{J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26\left(\mathrm{H}_{\mathrm{e}}, \mathrm{dd}, \mathrm{J}=15.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 26.2,43.0,124.9,125.9,135.3,142.8,204.4 ;$ exact mass calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O} \mathrm{m} / \mathrm{e} 138.1045$, found $\mathrm{m} / \mathrm{e} 138.1048$. The above spectra agree with that reported. ${ }^{15 d}$
(E)-1-(1,3-Butadienyl)cyclohexan-2-ol (38j). ${ }^{15 e}$ Procedure D, yield 83%, a clear colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 1.14-1.34 (m, 4 H), 1.64-2.05 (m, 5 H), 3.20-3.30 (m, 1 H), $5.02\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=9.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.14\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=17.0,1.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.57\left(\mathrm{H}_{\mathrm{c}}\right.$, dd, J $\left.=15.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.17\left(\mathrm{H}_{\mathrm{d}}\right.$, dd, J $=15.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32\left(\mathrm{H}_{\mathrm{e}}\right.$, ddd, J = 16.5, $10.5,9.8 \mathrm{~Hz}, 1$ $\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.7,25.1,31.2,34.0,49.9,73.2,116.1$, 132.7, 136.5, 136.8; exact mass calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O} \mathrm{m} / \mathrm{e} 152.1201$, found $m / e 152.1188$. The spectral data for $\mathbf{3 8 j}$ are similar to that recorded.
(E)-4,6-Heptadien-2-ol (38k). ${ }^{15 f}$ Procedure D, yield 76\%, a viscous yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3$

[^10]H), 1.88 (bs, 1 H), 2.12-2.21 (m, 2 H), 3.76-3.86 (m, 1 H), $4.99\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=10.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.11\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.3,1.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61-5.73\left(\mathrm{H}_{\mathrm{c}}, \mathrm{m}, 1 \mathrm{H}\right), 6.11\left(\mathrm{H}_{\mathrm{d}}, \mathrm{dd}, \mathrm{J}=15.1,10.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29\left(\mathrm{H}_{\mathrm{e}}\right.$, ddd, J = 16.8, 10.2, $\left.10.1 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.8,42.4,67.3,116.0,130.5,134.1,136.8$; exact mass calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O} \mathrm{m} / \mathrm{e} 112.0888$, found $\mathrm{m} / \mathrm{e} 112.0911$.
(E)-1-Phenyl-3,5-hexadien-1-ol (38m). Procedure D, yield 57%, a liquid: ${ }^{13} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.09(\mathrm{bs}, 1 \mathrm{H}), 2.54(\mathrm{t}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.74(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=8.6\right.$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=15.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.62-5.74$ $\left(\mathrm{H}_{\mathrm{c}}, \mathrm{m}, 1 \mathrm{H}\right), 6.15\left(\mathrm{H}_{\mathrm{d}}, \mathrm{dd}, \mathrm{J}=14.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.32\left(\mathrm{H}_{\mathrm{e}}\right.$, ddd, J = 16.7, 10.2, $10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.41 (m, 5 H$)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 42.6,73.6,116.2,125.8,127.6,128.4,130.1$, 134.4, 136.7, 143.8; exact mass cal cd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O} \mathrm{m} / \mathrm{e} 174.1045$, found $m / e 174.1091$. The spectra agree with published data. ${ }^{15 \mathrm{~h}}$
(E)-1-[Tri(2-propyl)silyl]-1,3-butadiene (38p). Procedure D, yield 61\%, a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.01-$ $1.11(\mathrm{~m}, 21 \mathrm{H}), 5.10\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=9.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.21\left(\mathrm{H}_{\mathrm{b}}\right.$, dd, J = 16.8, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79\left(\mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=20.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.36$ (H_{d}, ddd, $\mathrm{J}=16.6,9.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.58\left(\mathrm{H}_{\mathrm{e}}, \mathrm{dd}, \mathrm{J}=20.5,9.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 10.9,20.6,117.0,129.3,140.3$, 146.7; exact mass calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{Si} \mathrm{m} / \mathrm{e} 210.2004$, found m / e 210.1780.
(E)- and (Z)-5-Methyl-6-phenyl-1,3-hexadienes (38q). Procedure D, yield 78\%, a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.01(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.43-2.75(\mathrm{~m}, 3 \mathrm{H}), 4.95\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}\right.$, J $=10.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.67$ $\left(H_{c}, d d, J=15.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.99\left(\mathrm{H}_{\mathrm{d}}, \mathrm{dd}, \mathrm{J}=15.4,10.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.28\left(\mathrm{H}_{\mathrm{e}}, \mathrm{ddd}, \mathrm{J}=17.1,10.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.10-7.35$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 19.5,38.3,43.4,115.1,125.9$, 128.1, 128.2, 129.3, 137.4, 140.2, 140.5; mass spectrum, m/e cal cd for $\mathrm{C}_{13} \mathrm{H}_{16}\left(\mathrm{M}^{+}\right)$172.1259; GC-MS detected two isomers in a ratio of 96:4 [major isomer m/e (relative intensity) 172 (8), 143 (5), 91 (44), 81 (100), 65 (15), 53 (15), 41 (18), 39 (15); minor isomer m/e (relative intensity) 172 (15), 143 (100), 128 (86), 115 (38), 91 (30), 77 (10), 65 (13), 51 (11), 39 (23)].

Single-Pot Dialkylations of (E)- and (Z)-1-(Phenylsul-fonyl)-4-(trimethylsilyl)-2-butenes. (E)- and (Z)-4-Meth-yl-4-(phenylsulfonyl)-1-(trimethylsilyl)-2-pentenes (47). n -BuLi ($0.22 \mathrm{~mL}, 0.35 \mathrm{mmol}, 1.60 \mathrm{M}$ in hexane) was added to 7 and $8(83 \mathrm{mg}, 0.31 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ in THF (10 mL). After 20 min , methyl iodide ($91 \mathrm{mg}, 0.64 \mathrm{mmol}$) was added. The mixture was warmed to $-30^{\circ} \mathrm{C}$ and recooled to $-78^{\circ} \mathrm{C}$, and additional n-BuLi ($0.30 \mathrm{~mL}, 0.48 \mathrm{mmol}, 1.60 \mathrm{M}$) was added. The solution was stirred for 15 min , and more methyl iodide ($68 \mathrm{mg}, 0.48 \mathrm{mmol}$) was added. The mixture was warmed to $\sim 20^{\circ} \mathrm{C}$, stirred for 1 h , taken up in $\mathrm{Et}_{2} \mathrm{O}$, worked up, and concentrated. Column chromatography (silica gel; ethyl acetate 0-5\%) of the concentrate gave (E, Z)-47 ($93 \mathrm{mg}, 98 \%$), a colorless viscous oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.00(\mathrm{~s}, 9 \mathrm{H}), 1.2-1.7$ (m with a singlet at $\delta 1.33$; 8 H), 5.2-5.7 (m, 2 H), 7.3-8.0 ($\mathrm{m}, 5 \mathrm{H}$); mass spectrum, m/e calcd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{O}_{2} \mathrm{SPh}\right)$ 155.1256, found 155.1244 .

Procedure E for Monoalkylation of (E)- and (Z)-1-(Phenylsulfonyl)-1-substituted-4-(trimethylsilyl)-2-butenes (32); (E)- and (Z)-4-Methyl-5-phenyl-4-(phenylsul-fonyl)-1-(trimethylsilyl)-2-pentenes (48). n-BuLi $(0.23 \mathrm{~mL}$, $0.53 \mathrm{mmol}, 2.30 \mathrm{M}$) was added to a solution of $\mathbf{3 2 b}(170 \mathrm{mg}$, 0.48 mmol) in THF (10 mL) at $-78^{\circ} \mathrm{C}$. Methyl iodide (136 $\mathrm{mg}, 0.96 \mathrm{mmol}$) was added after 20 min . The solution was then stirred 1 h at room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}$, worked up, and concentrated to a yellow mobile oil, 211 mg . Column chromatography (silica gel; ethyl acetate 0-3\%) yielded (E, Z)-48 ($170 \mathrm{mg}, 97 \%$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E -isomer) δ $-0.12(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{H}, \mathrm{d}, \mathrm{J}=$ $12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.29\left(\mathrm{H}_{\mathrm{b}}, \mathrm{d}, \mathrm{J}=13.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.19(\mathrm{dt}, \mathrm{J}=$ $15.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (dt, J $=15.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.0-7.3$ $(\mathrm{m}, 5 \mathrm{H}), 7.4-7.9(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$-isomer) $\delta-1.8$ (q), 17.1 (e), 23.7 (t), 39.5 (t), 69.0 (s), 124.3 (d), 126.7 (d), 127.9 (d), 128.3 (d), 130.7 (d), 130.8 (d), 133.3 (d), 134.6 (d), 135.2 (s), 135.7 (s); mass spectrum, m/e calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{O}_{2^{-}}\right.$ SPh) 231.1569, found 231.1590.
(E)- and (Z)-4-Benzyl-5-phenyl-4-(phenylsulfonyl)-1-(trimethylsilyl)-2-pentenes (49). Procedure E, yield 71\%, white crystals: $\mathrm{mp} 100-101^{\circ} \mathrm{C}$ (from hexane): ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CCl} 4$,

E-isomer) $\delta 0.00(\mathrm{~s}, 9 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 4 \mathrm{H})$, $5.28(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dt}, \mathrm{J}=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.1-8.0$ $(\mathrm{m}, 15 \mathrm{H})$; mass spectrum, m/e calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{SSi}\left(\mathrm{M}^{+}-\right.$ $\mathrm{C}_{7} \mathrm{H}_{7}$) 357.1344, found 357.1304.
(E)- and (Z)-4-Benzyl-5-phenyl-4-(phenylsulfonyl)-1-(trimethylsilyl)-2-nonenes (50) and (E)- and (Z)-4-Benzyl-1,3-nonadienes (51). Procedure E, (E,Z)-50, yield 61\%, a clear oil [${ }^{1} \mathrm{H}$ NMR (CCl_{4}, E-isomer) $\delta 0.07$ (s, 9 H), 0.81-1.86 $(\mathrm{m}, 13 \mathrm{H}), 3.18\left(\mathrm{H}_{\mathrm{a}}, \mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}\right) 3.44\left(\mathrm{H}_{\mathrm{b}}, \mathrm{J}=13.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.27(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dt}, \mathrm{J}=15.8,7.8 \mathrm{~Hz}, 1$ H), 7.1-7.9 (m, 10 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E-isomer) $\delta 1.8$ (o), 13.9 (o), 22.3 (e), 23.6 (e), 23.9 (e), 31.0 (e), 32.5 (e), 36.6 (e), 71.8 (u), 125.3 (o), 135.6 (u), 136.6 (o), 128.2 (o), 130.6 (o), 130.6 (o), 133.2 (o), 134.0 (o), 135.7 (u), 136.6 (u), mass spectrum, $\mathrm{m} / \mathrm{ecalcd}$ for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{O}_{2} \mathrm{SPh}\right)$ 287.2195, found 287.2200] and (E, Z)-51 (yield $30 \%, E / Z=54: 46$) as a clear colorless oil [IR (neat film) $1600 \mathrm{~cm}^{-1}$; NOE differences with irradiation at $\delta 5.88$ gave enhancements at $\delta 3.39$ (4.85\%), 5.13 (5.18\%), 6.61 (1.82\%), and 7.1-7.2 (2.24\%); NOE differences with irradiation at $\delta 6.05$ resulted in enhancements at $\delta 1.99$ (4.32\%), 5.21 (5.55%), and 6.74 (1.54\%); mass spectrum, m/e calcd for $\mathrm{C}_{16} \mathrm{H}_{22}\left(\mathrm{M}^{+}\right)$214.1722, found 214.1744; GC-MS detected two isomers in a 54:46 ratio [major isomer m/e (relative intensity) $214\left(30, \mathrm{M}^{+}\right.$), 171 (1), 157 (17), 143 (100), 129 (40), 128 (28), 115 (18), 91 (67), 81 (16), 79 (10), 77 (9), 67 (18), 65 (14); minor isomer m/e(relativeintensity) $214\left(29, \mathrm{M}^{+}\right.$), 171 (1), 157 (18), 143 (100), 129 (39), 128 (28), 115 (18), 91 (62), 81 (14), 79 (9), 67 (17), 65 (13)]].

Elimination of (E)- and (Z)-4-Benzyl-4-(phenylsulfo-nyl)-1-(trimethylsilyl)-2-nonenes (50) on Silica Gel. Debenzenesulfonyltrimethylsilylation of ($\mathrm{E}, \mathrm{Z)-50(127mg,0.30}$ mmol) was effected on silica gel (pentane). After 0.5 h , the column was eluted with pentane and evaporated to yield (E, Z)51 ($27 \mathrm{mg}, 42 \%$).
(E)- and (Z)-4-Methyl-5-phenyl-1,3-pentadienes (56). Procedure D, yield 75%, an oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$ - and Z-isomers) $\delta 1.53$ (s, 3 H, Z), 1.70 (s, $3 \mathrm{H}, \mathrm{E}$), 3.35 (s, $2 \mathrm{H}, \mathrm{E}$), $3.50(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Z}), 5.01-5.06\left(\mathrm{H}_{\mathrm{a}}\right.$, two overlapping dd, $\mathrm{J}_{\mathrm{E}}=10.2$, 1.7 Hz, E and Z), $5.13\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}\right), 5.18$ $\left(H_{b}, d, J=16.7, H z, 1 H, Z\right), 5.93\left(H_{c}, d, J=10.5 H z, 1 H, E\right)$, $6.01\left(\mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}\right), 6.57\left(\mathrm{H}_{\mathrm{d}}\right.$, ddd, J $=16.8,10.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{E}), 6.72\left(\mathrm{H}_{\mathrm{d}}, \mathrm{ddd}, \mathrm{J}=16.8,10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}\right)$, 7.1-7.4 (m, 5H); NOE differences with irradiation at $\delta 5.93$ gaveenhancements at 3.35 (2.93\%) and 5.13 (2.53\%); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$ and Z-isomers) $\delta 16.5$ (o, Z), 23.5 (o, Z), 38.3 (e, Z), 46.2 (e, E), 115.5 (e, E), 115.6 (e, Z), 126.1 (o, Z), 126.1 (o, E), 127.1 (o, E), 127.5 (o, Z), 128.3 (o, E), 128.4 (o, Z), 128.6 (o, Z), 129.0 (o, E), 133.1 (o, Z), 133.4 (o, E), 138.0 (u, Z), 138.4 (u, E), $139.6(\mathrm{u}, \mathrm{E})$; mass spectrum, m/e calcd for $\mathrm{C}_{12} \mathrm{H}_{14}\left(\mathrm{M}^{+}\right)$ 158.1095, found 158.1095. GC-MS detected two isomers in a 80:20 ratio [major isomer m/e(relative intensity) 158 (46), 143 (100), 129 (56), 128 (75), 115 (38), 103 (5), 91 (53), 80 (12), 79 (15), 77 (18), 65 (39), 63 (16), 51 (24).
(E)- and (Z)-1-(Phenylsulfonyl)-1-(3-(trimethylsilyl)-1propenyl)cyclopropanes (62) and (E)- and (Z)-1-(Phen-ylsulfonyl)-1-(3-(trimethylsilyl)-1-propenyl)tetrahydropyrans (66). A solution was prepared from 7 and 8 (509 mg , 1.89 mmol) and n-BuLi ($0.79 \mathrm{~mL}, 2.09 \mathrm{mmol}, 2.65 \mathrm{M}$ in hexane) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. Excess ethylene oxide ($66,1.13 \mathrm{~g}$, 25.67 mmol) was added. The mixture was refluxed for 1.3 h and then cooled to $0^{\circ} \mathrm{C}$. Methanesulfonyl chloride ($0.22 \mathrm{~g}, 1.90$ $\mathrm{mmol})$ was added. The solution was refluxed for 1.5 h and then cooled to $-78{ }^{\circ} \mathrm{C}$. More n -BuLi (0.79 mL) was added, and the bright yellow suspension was warmed to room temperature. After 20 min , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, worked up, and concentrated to a clear yellow liquid (0.75 g). Column chromatography (silica gel; ethyl acetate $0-10 \%$) yielded (E)-62 ($160 \mathrm{mg}, 28 \%$), the first eluent, a white crystalline solid, $\mathrm{mp} 60-63^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E -isomer) $\delta-0.11$ ($\mathrm{s}, 9 \mathrm{H}$) , $1.02\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=6.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.40(\mathrm{~d}, \mathrm{~J}=7.1$ $\mathrm{Hz} .2 \mathrm{H}), 1.69(\mathrm{dd}, \mathrm{J}=6.6,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.5-5.6(\mathrm{~m}, 2 \mathrm{H})$, $7.4-7.8(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-2.0(\mathrm{q}), 12.8(\mathrm{t}), 23.1$ (t), 44.0 (s), 120.6 (d), 128.6 (d), 128.7 (d), 133.0 (d), 135.9 (d), 139.0 (s); mass spectrum m/e calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SSi}\left(\mathrm{M}^{+}\right)$
294.1110, found 294.1108. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{SSi}$: C 61.18; H, 7.53. Found: C, 61.19; H, 7.50.

The second eluent, (E, Z)-67 ($50 \mathrm{mg}, 8 \%$), was a clear oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$-isomer) $\delta 0.02$ (s, 9 H), 1.57 (d, J $=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.76\left(\mathrm{~d}, \mathrm{~J}=12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 2.27$ (ddd, J $=12.7$, $13.0,4.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}$), 3.42 (ddd, J = 12.5, $11.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$, H_{c}), $3.85\left(\mathrm{dd}, \mathrm{J}=11.2,4.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{d}}\right), 5.02(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}$), $5.60\left(\mathrm{dt}, \mathrm{J}=16.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 7.4-7.9(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E-isomer) $\delta-1.7,24.2,29.4,63.5,66.0,121.7$, 128.4, 130.8, 133.5, 135.2, 137.5; NOE differences with irradiation at $\delta 3.42$ gave enhancements at $\delta 1.76$ (3.21\%), δ 3.85 (29.63\%), $\delta 5.02$ (2.26\%), and $\delta 5.60$ (2.46\%); NOE differences with irradiation at $\delta 3.42$ resulted in enhancements at $\delta 1.76$ (3.21\%), $\delta 3.85$ (29.63\%), $\delta 5.02$ (2.26\%), $\delta 5.60$ (2.46\%), and $\delta 3.42$ (25.74\%); NOE differences with irradiation at $\delta 5.02$ led to enhancements at $\delta 1.57$ (5.17\%), $\delta 1.76$ (4.76\%), $\delta 3.42$ (2.24\%), and $\delta 7.80$ (1.97\%); mass spectrum, m/e cal cd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{OSi}\left(\mathrm{M}^{+}-\mathrm{O}_{2} \mathrm{SPh}\right)$ 197.1362, found 197.1371; GC-$\mathrm{CI}-\mathrm{MS}\left(\mathrm{CH}_{4}\right) \mathrm{m} / \mathrm{e}$ (relative intensity) 339 (100, $\mathrm{M}^{+}+1$), 323 (46), 251 (17), 215 (39), 125 (24), 123 (10), 111 (25), 107 (47), 95 (15).

Procedure F for Cycloalkylation of 1-(Phenylsulfo-nyl)-4-(trimethylsilyl)-2-butenes (7 and 8); (E)- and (Z)-1-(Phenylsulfonyl)-1-(3-(trimethylsilyl)-1-propenyl)cyclopropanes (62). n-BuLi ($1.60 \mathrm{~mL}, 3.87 \mathrm{mmol}, 2.42 \mathrm{M}$ in hexane) was added to 7 and $8(0.96 \mathrm{~g}, 3.57 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ in THF (10 mL). After $10 \mathrm{~min}, ~ 1,2$-dibromoethane (68, 812 $\mathrm{mg}, 4.32 \mathrm{mmol}$) was added. After 1 h , the solution was recooled to $-78^{\circ} \mathrm{C}$ and additional n -BuLi ($2.20 \mathrm{~mL}, 5.32 \mathrm{mmol}$) was added. The mixture, after warming to room temperature, was stirred for 1 h , diluted with $\mathrm{Et}_{2} \mathrm{O}$, worked up, and concentrated to a yellow liquid oil (1.23 g). Column chromatography (silica gel; ethyl acetate 0-5\%) yielded (E,Z)-62 (1.01 $\mathrm{g}, 95 \%$), a viscous oil which solidified upon standing; mp 63$65{ }^{\circ} \mathrm{C}$ (from pentane). The product was identical with that prepared from $\mathbf{1 5}$ and $\mathbf{1 6}$ with $\mathbf{5 8}$ and subsequent ring closure of $\mathbf{6 1}$ (eq 8).
(E)- and (Z)-1-(Phenylsulfonyl)-1-(3-(trimethylsilyl)-1propenyl)cyclobutanes (71, $\mathbf{n}=3$). ProcedureF, yield 87\%, a colorless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, E-isomer) $\delta-0.06(\mathrm{~s}, 9 \mathrm{H})$, 1.46 (dd, J $=8.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.6-2.3 (m, 4 H), 2.7-3.0 (m, $2 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dt}, \mathrm{J}=15.4,7.9 \mathrm{~Hz}, 1$ H), 7.4-7.9 (m,5H); irradiation at $\delta 1.6-2.3$ collapses $\delta 2.7-$ 3.0 to a bs; irradiation at $\delta 1.46$ collapses $\delta 5.49$ to a d; ${ }^{13} \mathrm{C}$ NMR (CDCl 3 , E-isomer) $\delta-1.9,15.1,23.2,27.8,66.9,123.9$, 128.4, 129.6, 133.2, 133.3, 136.3; mass spectrum, m/e cal cd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{O}_{2} \mathrm{SC}_{6} \mathrm{H}_{5}\right)$ 167.1256, found 167.1271; CI-MS $\left(\mathrm{CH}_{4}\right)$, m/e (relative intensity) 309 (2, M+ + H), 287 (6), 269 (4), 243 (10), 214 (88), 199 (28), 167 (100), 95 (33), 73 (31).
(E)- and (Z)-1-(Phenylsulfonyl)-1-(3-(trimethylsilyl)-1propenyl)cyclopentanes (71, $n=4$). Procedure F, yield 89%, a liquid: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}-$ and Z -isomers) $\delta-0.03$ (s, $9 \mathrm{H}, \mathrm{Z}), 0.08$ (s, $9 \mathrm{H}, \mathrm{E}), 1.43$ (dd, J $=8.00,0.8 \mathrm{~Hz}, 2 \mathrm{H}$), $1.5-$ $1.8(\mathrm{~m}, 6 \mathrm{H}), 2.2-2.4(\mathrm{~m}, 2 \mathrm{H}), 5.03$ (dt, J $=11.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}$, Z), 5.21 (d, J $=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}$), 5.43 (dt, J $=15.5,8.0 \mathrm{~Hz}, 1$ H, E), 5.59 (dt, J = 11.5, $9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Z}), 7.4-7.8(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, E-isomer) $\delta-2.0,23.3,23.9,32.7,74.4,125.2$, 128.2, 129.9, 132.8, 133.0, 137.2; mass spectrum, m/ecalcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{O}_{2} \mathrm{SPh}\right)$ 181.1412, found 181.1447.
(E)- and (Z)-1-(PhenyIsulfonyl)-1-(3-(trimethylsilyl)-1propenyl) cyclohexanes (71, $\mathbf{n}=5$). ProcedureF, yield 78\%, a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, \mathrm{E}$-isomer) $\delta-0.02(\mathrm{~s}, 9 \mathrm{H})$, $1.0-1.9,(\mathrm{~m}, 12 \mathrm{H}), 4.92$ (dd, J $=15.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.49 (dt, $\mathrm{J}=15.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.4-7.8(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, E-isomer) $\delta-1.9,21.5,23.8,25.1,28.8,68.4,122.9,128.0$, 130.7, 133.0, 135.6, 136.0; mass spectrum, m/e cal cd for $\mathrm{C}_{12} \mathrm{H}_{23}$ Si ($\left.\mathrm{M}^{+}-\mathrm{O}_{2} \mathrm{SPh}\right)$ 195.1569, found 195.1557.

Allylenecyclopropane (72, $\mathbf{n}=\mathbf{2}$). Procedure D gave 83 ($\mathrm{n}=2,90 \%$) and hexamethyldisiloxane (HMDS) as a colorless oil stable at room temperature for several days. Diene $\mathbf{7 2}$ (n $=2$) turned cloudy upon standing: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CCl}_{4}\right) \delta 0.00(\mathrm{~s}$, HMDS), $1.05(\mathrm{~s}, 4 \mathrm{H}), 5.00-5.45(\mathrm{~m}, 2 \mathrm{H}), 6.32-6.88(\mathrm{~m}, 2 \mathrm{H})$. The IR and ${ }^{1} \mathrm{H}$ NMR spectra of $72(\mathrm{n}=2)$ are identical with the literature. ${ }^{15 \mathrm{c}}$
N-Phenyl-4,5-diazaspiro[2.5]oct-7-ene-4,5-dicarboximide (73). TBAF ($7.13 \mathrm{~mL}, 7.13 \mathrm{mmol}, 1.0 \mathrm{M}$ solution in THF) was added to $83(\mathrm{n}=2 ; 1.40 \mathrm{~g}, 4.75 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 5 min , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, worked up, and cooled ($-78^{\circ} \mathrm{C}$). 4-Phenyl-1,2,4-triazoline-3,5-dione ${ }^{159}$ ($0.83 \mathrm{~g}, 4.75 \mathrm{mmol}$) was then added in 1 h . The temperature of the reaction mixture was not allowed to rise above $60^{\circ} \mathrm{C}$. The mixture was filtered, concentrated to a brown solid (1.10 g), and chromatographed (silica gel ; ethyl acetate 25\%) to give 73 ($0.98 \mathrm{~g}, 81 \%$) as a white crystalline solid: $\mathrm{mp} 130-131^{\circ} \mathrm{C}$ (from hexane): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.92$ (dd, J $=7.6 \mathrm{~Hz}, 2$ H), 2.10 (dd, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.17 (dd, J $=3.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.22 (dt, J $=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.82(\mathrm{dt}, \mathrm{J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.2-7.7$ (m, 5 H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 12.0$ (t$), 40.9$ (s), 43.8 (t$), 118.3$ (d), 125.6 (d), 128.1 (d), 129.1 (d), 130.5 (d), 150.7 (s), 152.4 (s); mass spectrum, m/e calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right) 255.1007$, found 255.1004. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $65.87 ; \mathrm{H}, 5.13$. Found: C, 65.47; H, 4.99.

Allylenecyclobutane (72, n=3). Procedure E, yield 61\%; HMDS 22\%: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.08$ (s, HMDS), 2.01 (quin, $\mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.7-2.8(\mathrm{~m}, 4 \mathrm{H}), 4.91\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=10.2,0.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.99\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=17.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{H}_{\mathrm{c}}, \mathrm{dt}, \mathrm{J}=\right.$ $10.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27\left(\mathrm{H}_{\mathrm{d}}\right.$, ddd, J = 7.0, 10.8, $10.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.9(\mathrm{q}, \mathrm{HMDS}), 17.1(\mathrm{t}), 29.9(\mathrm{t}), 31.3(\mathrm{t})$, 113.0 (t), 121.7 (d), 133.1 (d), 146.0 (s); mass spectrum, m/e calcd for $\mathrm{C}_{7} \mathrm{H}_{10}\left(\mathrm{M}^{+}\right) 94.0782$, found 94.0789.

Allylenecyclopentane ($\mathbf{7 2}, \mathbf{n}=\mathbf{4}$). Procedure C, yield 51\%; HMDS 11\%: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.12$ (s, HMDS), 1.6$1.8(\mathrm{~m}, 4 \mathrm{H}), 2.3-2.4(\mathrm{~m}, 4 \mathrm{H}), 4.95\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=9.2,1.0 \mathrm{~Hz}, 1\right.$ H), $5.04\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.99\left(\mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=10.9\right.$, $1 \mathrm{H}), 6.46\left(\mathrm{H}_{\mathrm{d}}, \mathrm{dd}, \mathrm{J}=17.0,10.6,10.5 \mathrm{~Hz}, 1 \mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.8(\mathrm{q}, \mathrm{HMDS}), 26.1$ (t$), 26.3(\mathrm{t}), 29.2(\mathrm{t}), 33.8(\mathrm{t})$, 113.2 (t), 121.3 (d), 134.7 (d), 147.6 (s); mass spectrum, m/e calcd for $\mathrm{C}_{8} \mathrm{H}_{12}\left(\mathrm{M}^{+}\right)$108.0939, found 108.0955.

Allylenecyclohexane (72, $\mathbf{n}=\mathbf{5}$). . $^{15 g . h}$ Procedure D, yield 67% : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.5-1.6(\mathrm{~m}, 6 \mathrm{H}), 2.15(\mathrm{bs}, 2 \mathrm{H}), 2.29$ (bs, 2 H), $4.97\left(\mathrm{H}_{\mathrm{a}}\right.$, dd, $\left.\mathrm{J}=10.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.10\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}\right.$ $=16.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80\left(\mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.63\left(\mathrm{H}_{\mathrm{d}}\right.$, ddd, J $=16.8,10.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 26.8$, $27.7,28.5,29.2,37.2,114.4,122.7,132.7,144.1$; mass spectrum m / e calcd for $\mathrm{C}_{9} \mathrm{H}_{14}$ 122.1096, found 122.1094. The spectra of $72(\mathrm{n}=5)$ are identical with that in the literature. ${ }^{159, h}$

4-Allylenetetrahydropyran (74). Procedure C, yield 87\%: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.27(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{t}, \mathrm{J}=$ $5.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.69 (quin, J $=5.6 \mathrm{~Hz}, 4 \mathrm{H}$), $5.02\left(\mathrm{H}_{\mathrm{a}}, \mathrm{dd}, \mathrm{J}=\right.$ $10.2,1.6 \mathrm{~Hz}), 5.16\left(\mathrm{H}_{\mathrm{b}}, \mathrm{dd}, \mathrm{J}=16.8,1.7 \mathrm{~Hz}\right), 5.88\left(\mathrm{H}_{\mathrm{c}}, \mathrm{d}, \mathrm{J}=\right.$ $11.0 \mathrm{~Hz}), 6.57\left(\mathrm{H}_{\mathrm{d}}\right.$, ddd, J $=16.7,10.6,10.5 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 30.2,37.0,68.5,69.3,115.8,124.3,131.9,138.0$; GC-HR-MS, m/e calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$ 124.0856, found 124.0872.

Acknowledgment. We thank the National Science F oundation for support of this research.

Supporting Information Available: Experimental summaries and analytical data for 38e, 381, 381, 54, and 55 and NMR spectra (80 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J O970545K

[^0]: (1) (a) K ocienski, P. J. Tetrahedron Lett. 1979, 2649. (b) K ocienski, P. J. J. Org. Chem. 1980, 45, 2037. (c) Hsiao, C.-N.; Shechter, H. Tetrahedron. Lett. 1982, 3455. (d) Eisch, J. J .; Behrooz, M.; Dua, S. K. J. Organomet. Chem. 1985, 285, 121. (E) H saio, C.-N.; Shechter, H. J . Org. Chem. 1988, 53, 2688. (f) Kim, S. H.; J in, Z.; Ma, S.; Fuchs, P. L. Tetrahedron Lett. 1995, 4013 and references therein.

[^1]: (2) (a) The initial results of the present study were communicated by the following: Hsiao, C.-N.; Shechter, H. Tetrahedron Lett. 1984, 25, 1219. (b) The possible utility of tetrabutylammonium triphenyldifluorosilicate $\left.\left[\mathrm{Bu}_{4} \mathrm{~N}^{(} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{SiF}_{2}\right]$ for elimination of $\mathbf{3 , 5}, \mathbf{3 2}$, and $\mathbf{6}$ has as yet not been determined.2c,d (c) Pilcher, A. S.; Ammon, H. J.; DeShong, P. J. J. Am. Chem. Soc. 1995, 117, 5166. (d) Pelcher, A. S.; DeShong, P. J. Org. Chem. 1996, 61, 6901.

[^2]: (3) (a) Prepared initially by Sommer, L. H.; Goldberg, G. M.; Whitmore, F. C. J. Am. Chem. Soc. 1946, 68, 481. (b) The concentration of chloromethyltrimethylsilane in $\mathrm{Et}_{2} \mathrm{O}$ or THF greatly affects the yield of 9 upon reaction with magnesium. When the (chloromethyl)trimethylsilane is $\sim 3.33 \mathrm{M}$, the yield of 9 is $\sim 95 \%$. Under very dilute conditions, the yield of 9 is greatly lowered. (b) Phenylsulfenyl chloride should be added slowly so as to maintain the reaction temperature below $-60^{\circ} \mathrm{C}$. At higher temperatures side products are formed which reduce the yield and make purification of $\mathbf{1 2}$ difficult.

[^3]: (4) (a) Hine, J.; Linden, S.-M.; Wang, A.; Thiagarajan, V. J. Org. Chem. 1980, 45, 2821. (b) Hine, J.; Skoglund, M. J. J. Org. Chem. 1982, 47, 4766. The equilibrium constant, K_{1}, for trans-n-butyl 2-butenyl sulfone/trans-n-butyl 1-butenyl sulfone in t-BuOH at $25^{\circ} \mathrm{C}$ is 40 ± 15; $-\Delta \mathrm{G}=2.2 \pm 0.3 \mathrm{kcal} / \mathrm{mol}$.

[^4]: (5) (a) Only a portion of the cationic hyperconjugative forms involving $\mathrm{Me}_{3} \mathrm{Si}^{+}$and H^{+}and anionic hyperconjugative forms involving ${ }_{-} \mathrm{O}_{2} \mathrm{~S}-\mathrm{Ph}$ has been illustrated. This concept will be devel oped further in publications from this laboratory. (b) Baker, J. W. Hyperconjugation; Oxford University Press: London E.C., 1952; Vol. 4, p 58. (c) Shechter, H.; Shepherd, J. W. J. Am. Chem. Soc. 1954, 76, 2716.

[^5]: (6) Cunico, R. F.; Han, Y.-K. J. Organomet. Chem. 1976, 105, C29
 (7) Among the many possibilities are that (E)-32i had been produced in better yield and/or undergoes elimination faster than (Z)-32i.

[^6]: (8) Hill, R. K.; Bock, M. G. J . Am. Chem. Soc. 1978, 100, 637.
 (9) (a) Soula, G. J. Org. Chem. 1985, 50, 3717. (b) TDA-1 was obtained from the Aldrich Chemical Co., Milwaukee, WI.
 (10) Reaction was effected by adding $\mathrm{AlCl}_{3}(769 \mathrm{mg}, 5.76 \mathrm{mmol})$ to 32b (806 mg, 2.25 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, stirring (0.5 h), and then adding pentane (20 mL) and water.

[^7]: (11) (a) The leaving group abilities of sulfones are increased by Lewis acids. (b) Trost, B. M.; Ghadiri, M. R. J. Am. Chem. Soc. 1984, 106, 7260. (c) Kocienski and Todd [K ocienski, P.; Todd, M. J. Chem. Soc., Perkin Trans. 1 1983, 1777] report that certain sulfones eliminate upon chromatography on silica gel.

[^8]: (12) (a) Kaiser, E. M.; Solter, L. E.; Schwarz, R. A.; Beard, R. D.; Hauser, C. R. J . Am. Chem. Soc. 1971, 93, 4238. (b) Evans, J. B.; Marr, G. J. J. Chem. Soc., Perkins Trans. 1 1972, 2502. (c) Eisch, J. J.; Behrooz, M.; Dua, S. K. J . Organomet. Chem. 1985, 285, 121. (d) Gais, H.-J .; Volhardt, J.; Lukas, K. L. Angew. Chem. 1985, 97, 695 and references therein. (f) Yet, L. Ph.D. Dissertation, The Ohio State University, Columbus, $\mathrm{OH}, 1995$. (g) The suggestions of J. J. Eisch concerning the mechanism of formation of $\mathbf{6 7}$ are appreciated.
 (13) (a) Blome, H. Dissertation, Bochum, West Germany, 1973. (b) Brinker, V. H.; Konig, L. J. Am. Chem. Soc. 1979, 101, 4783. (c) Binger, P.; Germer, A. Chem. Ber. 1981, 114, 3325. (d) Zutterman, F.; Krief, A. J. Org. Chem. 1983, 48, 1135.

[^9]: (14) (a) Lenihan, B. D.; Shechter, H. J. Org. Chem. 1998, 63, 2072. (b) Lenihan, B. D.; Shechter, H. J . Org. Chem. 1998, 63, 2086.

[^10]: (15) (a) Hsiao, C.-N. Ph.D. Dissertation, The Ohio State University, Columbus, OH, 1982. (b) Chan, T. H. Tetrahedron Lett. 1978, 2383. (c) Bloch, R.; Abecassis, J.; Hassan D. Can. J. Chem. 1984, 62, 2019. (d) Seebach, D.; Pohmakotr, M. Tetrahedron 1981, 37, 4047. (E) Wender, P. A.; Sieburth, S. M.; Petratis I. I.; Singh. S. Tetrahedron 1981, 37, 3967. (f) Seyferth, D.; Pornet, J. J. Org. Chem. 1980, 45, 1721. (g) Corey, E. J.; Cane, D. E. J. Org. Chem. 1969, 34, 3053. (h) Booker, H.; Evans, L. K.; Gillam, A. E. J. Chem. Soc. 1940, 1462.

